## SHARP SERVICE MANUAL

No. 00ZFO77U//SME


## FACSIMILE

FO-77 model UX-66

Illustration: FO-77

## CONTENTS

## CHAPTER 1. GENERAL DESCRIPTION

[1] Specifications1-1
[2] Operation panel ..... 1-2
[3] Transmittable documents ..... 1-3
[4] Installation ..... 1-4
[5] Quick reference guide ..... 1-9
[6] Quick setup guide (UX-66U only) ..... 1-10
CHAPTER 2. ADJUSTMENTS
[1] Adjustments ..... 2-1
[2] Diagnostics and service soft switch ..... 2-2
[3] Troubleshooting ..... 2-18
[4] Error code table ..... 2-19
CHAPTER 3. MECHANISM BLOCKS
[1] General description3-1
[2] Disassembly and assembly procedures ..... 3-3
CHAPTER 4. DIAGRAMS
[1] Block diagram ..... 4-1
[2] Wiring diagram ..... 4-2
[3] Point-to-point diagram ..... 4-3

## CHAPTER 5. CIRCUIT DESCRIPTION

[1] Circuit description ..... 5-1
[2] Circuit description of control PWB ..... 5-2
[3] Circuit description of TEL/LIU PWB ..... 5-9
[4] Circuit description of power supply PWB ..... 5-12
[5] Circuit description of CIS unit ..... 5-12
CHAPTER 6. CIRCUIT SCHEMATICS AND PARTS LAYOUT
[1] Control PWB circuit ..... 6-1
[2] TEL/LIU PWB circuit ..... 6-9
[3] Power supply PWB circuit ..... 6-13
[4] Operation panel PWB circuit ..... 6-15
CHAPTER 7. OPERATION FLOWCHART
[1] Protocol ..... 7-1
[2] Power on sequence ..... 7-2
CHAPTER 8. OTHERS
[1] Service tools ..... 8-1
[2] IC signal name ..... 8-4
PARTS GUIDE

## CAUTION FOR BATTERY REPLACEMENT

## (Danish) ADVARSEL!

Lithiumbatteri-Eksplosionsfare ved fejlagtig håndtering.
Udskiftning må kun ske med batteri af samme fabrikat og type.
Levér det brugte batteri tilbage til leverandoren.
(English)
Caution!
Danger of explosion if battery is incorrectly replaced.
Replace only with the same or equivalent type recommended by the equipment manufacturer.
Discard used batteries according to manufacturer's instructions.
(Finnish)
VAROITUS
Paristo voi räjähtää, jos se on virheellisesti asennettu.
Vaihda paristo ainoastaan laitevalmistajan suosittelemaan tyyppiin. Hävitä käytetty paristo valmistajan ohjeiden mukaisesti.
(French)
ATTENTION
Il y a danger d'explosion s' il y a remplacement incorrect de la batterie. Remplacer uniquement avec une batterie du même type ou d'un type recommandé par le constructeur.
Mettre au rébut les batteries usagées conformément aux instructions du fabricant.
(Swedish) VARNING
Explosionsfare vid felaktigt batteribyte. Använd samma batterityp eller en ekvivalent typ som rekommenderas av apparattillverkaren.

Kassera använt batteri enligt fabrikantens instruktion.

## (German) Achtung

Explosionsgefahr bei Verwendung inkorrekter Batterien.
Als Ersatzbatterien dürfen nur Batterien vom gleichen Typ oder vom Hersteller empfohlene Batterien verwendet werden.
Entsorgung der gebrauchten Batterien nur nach den vom Hersteller angegebenen Anweisungen.

## CHAPTER 1. GENERAL DESCRIPTION

## [1] Specifications

| Automatic dialing: | Rapid Key Dialing: 5 numbers Speed Dialing: 35 numbers | Effective scanning width: Effective printing width: | 8.3" (210 mm) max. <br> 8.3" (210 mm) max. |
| :---: | :---: | :---: | :---: |
| Thermal paper: | Initial starter roll (included with machine): $32 \text { ft. (10 m) }$ | Contrast control: | Automatic/Dark selectable |
|  | Recommended replacement roll: | Reception modes: | Fax/Tel |
|  | FO-20PRw, 98 ft . (30m), 0.5' core | Copy function: | Yes |
| Paper cutting method: | Automatic cutter | Telephone function: | Yes (cannot be used if power fails) |
| Modem speed: | 9600 bps with automatic fallback to lower speeds | Power requirements: | 120 V AC, 60 Hz |
| Transmission time* : | Approx. 15 seconds | Operating temperature: | 41-95 ${ }^{\circ} \mathrm{F}\left(5-35^{\circ} \mathrm{C}\right)$ |
| Resolution: | Horizontal: 203 pels/inch (8 dots/mm) | Humidity: | Maximum: 85 \% RH |
|  | Vertical: <br> Standard: 98 lines/inch (3.85 lines/mm) | Power consumption: | Standby: 3.6 W <br> Maximum: 100 W |
|  | Fine/Halftone: <br> 196 lines/inch ( 7.7 lines/mm) <br> Super fine: <br> 391 lines/inch (15.4 lines/mm) | Dimensions: | Width: $12.0^{\prime \prime}(304 \mathrm{~mm})$ <br> Depth: $9.3^{\prime \prime}(236 \mathrm{~mm})$ <br> Height: $4.8^{\prime \prime}(122 \mathrm{~mm})$ |
| Automatic document feeder: | 5 pages max. (20 lb paper) | Weight: | Approx. $5.7 \mathrm{lbs} .(2.6 \mathrm{~kg}$ ) |
| Halftone (grayscale): | 64 levels | * Based on ITU-T (CCITT) | Chart \#1 at standard resolution in Sharp |
| Display: | 16-digit LCD display | time only). |  |
| Compression scheme: | MR, MH, Sharp (H2) | Note: The facsimile machine | Year 2000 compliant. |
| Applicable telephone line: | Public switched telephone network |  |  |
| Compatibility: | ITU-T (CCITT) G3 mode |  |  |
| Input document size: | Automatic feeding: <br> Width: 5.8 to $8.5^{\prime \prime}$ ( 148 to 216 mm ) Length: 5.5 to $11^{\prime \prime}$ ( 140 to 279 mm ) |  |  |
|  | Manual feeding: |  |  |
|  | Width: 5.8 to $8.5^{\prime \prime}$ ( 148 to 216 mm ) Length: 5.5 to $23.6^{\prime \prime}$ ( 140 to 600 mm ) |  |  |

[^0]
## [2] Operation panel



1. Rapid Dial keys

Press one of these keys to dial a fax or voice number automatically.

## 2. Display

This displays messages and prompts during operation and programming.

## 3. FUNCTION key

Press this key to select various special functions.
4. VOLUME keys

Press this keys to adjust the volume of the speaker when the SPEAKER key has been pressed, the volume of the handset when the handset is lifted, or the volume of the ringer at all other times.

## 5. Number keys

Use these keys to dial numbers, and enter numbers and letters storing auto-dial numbers.
6. SPEED DIAL key

Press this key to dial a fax or voice number using an abbreviated 2-digit Speed Dial number.
7. REDIAL key

Press this key to automatically redial the last number dialed.
8. START key

Press this key to begin transmission when using Speed
Dialing, Direct Keypad Dialing, or Normal Dialing.
9. STOP key

Press this key to cancel operation before it is completed.

## 10. COPY/HELP key

When a document is in the feeder, press this key to make a copy of a document. At any other time, press this key to print out the Help List, a quick reference guide to the opeation of your fax machine.
11. RESOLUTION/RECEPTION MODE key

When a document is in the feeder, press this key to adjust the resolution for faxing or copying. At any other time, press this key to select the reception mode (an arrow in the display will point to the currently selected reception mode).
12. SPEAKER key

Press this key to listen the line and fax tones through the speaker when faxing a document.
Note: This is not a speakerphone. You must pick up the handset to talk with the other party.

## 13. HOLD/SEARCH key

Press this key to search for an auto-dial number, or, during a phone conversation, press this key to put the other party on hold.
14. Panel release

Grasp this finger hold and pull toward you to open the operation panel.

## [3] Transmittable documents

## 1. Document Sizes

| Normal size | width | $5.8^{\prime \prime}-8.5^{\prime \prime}(148-216 \mathrm{~mm})$ |
| :---: | :---: | :---: |
|  | length | $5.5^{\prime \prime}-11^{\prime \prime}(140-279 \mathrm{~mm})$ |


** Use document carrier sheet for smaller documents.

* With special sizes, only one sheet can be fed into the machine at a time. Insert next page into feeder as current page is being scanned.


## 2. Paper Thickness \& Weight

|  | $\begin{array}{\|l} \hline 4 \times 6 \text { series } \\ (788 \mathrm{~mm} \times 1091 \mathrm{~mm} \times \\ 1000 \mathrm{~mm} \text { sheets }) \\ \hline \end{array}$ |  | Square meter series |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Minimum | Maximum | Minimum | Maximum |
| Feeder capacity | 5 sheets, max. |  |  |  |
| Paper weight | 45 kg | 69.2 kg | $52 \mathrm{~g} / \mathrm{m}^{2}$ | $80 \mathrm{~g} / \mathrm{m}^{2}$ |
| Paper thickness (ref.) | 0.06 mm | 0.09 mm | 0.06 mm | 0.09 mm |
| Paper size | $\begin{aligned} & 148 \mathrm{~mm} \times 140 \mathrm{~mm} \sim \\ & \text { A4 }(210 \mathrm{~mm} \times 297 \mathrm{~mm}), \text { Letter }(216 \mathrm{~mm} \times 279 \mathrm{~mm}) \end{aligned}$ |  |  |  |

## 3. Document Types

- Normal paper

Documents handwritten in pencil (No. 2 lead or softer), fountain pen, ball-point pen, or felt-tipped pen can be transmitted.
Documents of normal contrast duplicated by a copying machine can also be transmitted.

- Diazo copy (blue print)

Diazo copy documents of a normal contrast may be transmitted.

- Carbon copy

A carbon copy may be transmitted if its contrast is normal.

## 4. Cautions on Transmitting Documents

- Documents written in yellow, greenish yellow, or light blue ink cannot be transmitted.
- Ink, glue, and correcting fluid on documents must be dry before the documents can be transmitted.
- All clips, staples and pins must be removed from documents before transmission.
- Patched (taped) documents should be copied first on a copier and then the copies used for transmission.
- All documents should be fanned before insertion into the feeder to prevent possible double feeds.


## 5. Automatic Document Feeder Capacity

Number of pages that can be placed into the feeder at anytime is as follows:

Normal size: max. ADF 5 sheets
Special size: single sheet only (manual feed)
NOTES: - When you need to send or copy more pages than the feeder limit, place additional pages in feeder when last page in feeder is being scanned.

- Place additional pages carefully and gently in feeder. If force is used, double-feeding or a document jam may result.


## 6. Readable Width \& Length

The readable width and length of a document are slightly smaller than the actual document size.

Note that characters or graphics outside the effective document scanning range will not be read.

- Readable width
8.3" (210mm), max.



## - Readable length

This is the length of the document sent minus $0.2^{\prime \prime}(5 \mathrm{~mm})$ from the top and bottom edges.


## 7. Use of Document Carrier Sheet

A document carrier sheet must be used for the following documents.

- Those with tears.
- Those smaller than size $5.8^{\prime \prime}(\mathrm{W}) \times 5.5^{\prime \prime}(\mathrm{L})(148 \mathrm{~mm}(\mathrm{~W}) \times 140 \mathrm{~mm}$ (L)).
- Carbon-backed documents


Make print straight across paper E.G.

Place the document carrier in the document feeder with the clear film side down

NOTE: To transmit a carbon-backed document, insert a white sheet of paper between the carbon back of the document and the document carrier.

- Those containing an easily separable writing substance (e.g., tracing paper written on with a soft, heavy lead pencil).
NOTES: - When using the document carrier, carefully read the instructions written on the back.
- If the document carrier is dirty, clean it with a soft, moist cloth, and then dry it before using for transmission.
- Do not place more than one document in the carrier at a time.


## [4] Installation

## 1. Site selection

Take the following points into consideration when selecting a site for this model.

## ENVIRONMENT

- The machine must be installed on a level surface.
- Keep the machine away from air conditioners, heaters, direct sunlight, and dust.
- Provide easy access to the front, back, and sides of the machine. In particular, keep the area in front of the machine clear, or the original document may jam as it comes out after scanning.
- The temperature should be between $5^{\circ}$ and $35^{\circ} \mathrm{C}$.
- The humidity should be between $30 \%$ and $85 \%$ (without condensation).


## ELECTRICITY

AC $120 \mathrm{~V}, 60 \mathrm{~Hz}$, grounded (3-prong) AC outlet is required.

## Caution!

- Connection to a power source other than that specified will cause damage to the equipment and is not covered under the warranty.
- If your area experiences a high incidence of lightning or power surges, we recommend that you install a surge protector for the power and telephone lines. Surge protectors can be purchased at most telephone specialty stores.


## If the machine is moved from a cold to a warm place...

Condensation may from on the reading glass if machine is moved from a cold to a warm place, this will prevent proper scanning of documents for transmission. Turn on the power and wait approximately 2 hours before using machine.

## TELEPHONE JACK

A standard RJ11C telephone jack must be located near the machine. This is the telephone jack commonly used in most homes and offices.

- Plugging the fax machine into a jack which is not an RJ11C jack may result in damage to the machine or your telephone system. If you do not know what kind of jack you have, or need to have one installed, contact the telephone company.


## 2. Assembly and connections

(1) Plug the power cord into a $120 \mathrm{~V}, 60 \mathrm{~Hz}$, grounded (3-prong) AC outlet.

- Caution: Do not plug the power cord into any other kind of outlet. This will damage the machine and is not covered under the warranty.
- The machine does not have a power on/off switch, so the power is turned on and off by simply plugging in or unplugging the power cord.

(2) Connect the handset as shown and place it on the handset rest.
- The ends of the handset cord are identical, so they will go into either jack.


Use the handset to make ordinary phone calls, or to transmit and receive faxes manually.
(3) Attach the original document support as shown below.

(4) Insert one end of the line cord into the jack on the back of the machine marked TEL. LINE. Insert the other end into a standard (RJ11C) single-line wall telephone jack.


Note: The fax machine is set for touch-tone dialing. If you are on a pulse dial (rotary) line, you must set the fax machine for pulse dialing. Press the keys on the operation panel as follows:

1. Press these keys:

FUNCTION
The display will show:
(4)


DIAL MODE
2. Press 1 to select tone (touch-tone) dialing, or 2 to select pulse (rotary) dialing.

TONE PULSE (1) or (2)
3. Press the STOP key to return to the date and time display.


## 3. Removing the packing paper

(1) Grasp the finger hold and pull up to open the operation panel.

(2) Flip up the front paper guide.

(3) Remove the tape and packing paper from the cutter unit.

(4) Flip down the front paper guide and then close the operation panel.


## 4. Loading the thermal paper (FO-20PRw)

- Your fax machine prints incoming faxes on a special kind of paper called thermal paper.
- The fax machine's print head creates text and images by applying heat to the thermal paper.
(1) Grasp the finger hold as shown and pull up to open the operation panel.

(2) Flip up the front paper guide.


Press the knob to make sure the front side of the metal guide is down.
(3) Unwrap the roll of thermal paper and place it in the compartment.

- Important: The roll must be placed so the leading edge of the paper unrolls as shown. (The paper is only coated on one side for printing. If the roll is placed backwards, the paper will come out blank after printing.)

(4) Insert the leading edge of the paper into the slot as shown. Continue to push the paper through the slot until it comes out the opening in the front of the machine.

(5) Make sure the paper comes out straight, and then flip down the paper guide.

(6) Close the operation panel, making sure it clicks into place.
- A short length of the paper will be cut off.



## 5. Clearing a jammed document

If the original document doesn't feed properly during transmission or copying, or DOCUMENT JAMMED appears in the display, first try pressing the START key. If the document doesn't feed out, open the operation panel and remove it.

## Important:

Do not try to remove a document without first releasing it as explained below.
This may damage the feeder mechanism.
(1) Grasp the finger hold and pull up to open the operation panel.

(2) Flip up the green levers on each side of the white roller.

(3) Remove the document.

(4) Flip down the green levers on each side of the white roller.

(5) Close the operation panel, making sure it clicks into place.

- Press down on both front corners of the panel to make sure it clicks into place.



## 6. Clearing jammed paper

If the thermal paper jams, PAPER JAMMED will appear in the display. Follow the steps below to clear the jam.
(1) Grasp the finger hold and pull up to open the operation panel.

(2) Flip up the front paper guide.


Press the knob to make sure the front side of the metal guide is down.
(3) Remove the paper roll.

- Remove any cut pieces of paper from the paper compartment.



## (4) Cut off the wrinkled part of the paper.


(5) Reload the paper.

- Jammed paper is often caused by improper loading. Be sure to carefully follow the instructions for paper loading given in Loading the Thermal Paper.



## [5] Quick reference guide

## ENTERING YOUR NAME AND NUMBER

1. Press: ${ }^{\text {FUNCTION }}$ (3) \#\#

Display shows: OWN NUMBER SET
2. Press:

3. Enter your fax number (max. of 20 digits) by pressing the number keys.

- To insert a space between digits, press the \# key.
- If you make a mistake, press the SPEED DIAL key to backspace and clear the mistake.

4. Press: stant
5. Enter your name by pressing the appropriate number keys as shown below.

- To enter two letters in succession that require the same key, press the SPEAKER key after entering the first letter.

- To change case, press the REDIAL key.

Press \# or $\not *$ to scroll through symbols and special characters.
6. When finished, press:


## SETTING THE DATE AND TIME

1. Press: ${ }^{\text {FUNCTION }}$

Display shows: DATE \& TIME SET
2. Press:

3. Enter two digits for the Month (01 through 12).
4. Enter two digits for the Day (01 through 31).
5. Enter four digits for the Year (Ex: 1999).
6. Enter two digits for the Hour (01 through 12).
7. Enter two digits for the Minute (00 through 59).
8. Press the $*$ key for A.M. or the \# key for P.M.
9. When finished, press: staAt

STORING AND CLEARING AUTO DIAL NUMBERS

1. Press: ${ }^{\text {FUNCTION }}$

Display shows: FAX/TEL \# MODE
2. Press $\mathbf{1}$ to store a number or $\mathbf{2}$ to clear a number.
3. Enter a 2-digit Speed Dial number (from 01 to 05 for Rapid Key Dialing, or 06 to 40 for Speed Dialing) (If you are clearing a number, go to Step 7.)
4. Enter the full telephone/fax number.
5. Press: ${ }^{\text {staat }} \downarrow$
6. Enter the name of the location by pressing number keys (Refer to the letter entry table in ENTERING YOUR NAME AND NUMBER.)
7. Press: staat sion sion

## SENDING FAXES



## Normal Dialing

1. Lift the handset or press SPEAKER
2. Dial the fax number.
3. Wait for the reception tone (if a person answers, ask them to press their Start key).
4. Press:

Rapid Key Dialing
Press the appropriate Rapid Key. Transmission will begin automatically.
Speed Dialing

1. Press: $\bigcirc^{\text {SPEED }}$
2. Enter 2-digit Speed Dial number.
3. Press: stakt

RECEIVING FAXES
Press the RESOLUTION/RECEPTION MODE key until the arrow in the display points to the desired reception mode (make sure the document feeder is empty).


FAX mode: The fax machine automatically answers on four rings and receives the incoming document.
TEL mode:


SETTING THE DISPLAY LANGUAGE


## [6] Quick setup guide (UX-66U only)

## SHARRP UX-66 FAX

QUICK SETUP GUIDE

Note: To enter your name and fax number and set the date and time so that they appear on the automatic cover sheet, see pages 19-25 of your operation manual.

1
Remove the packing paper.

1. Grasp the finger hold and pull up to open the operation panel.

2. Flip up the front paper guide.

3. Flip down the front paper guide and close the operation panel.



Load the thermal paper.

1. Grasp the finger hold and pull up to open the operation panel.

2. Insert the leading edge of the paper into the slot. Push the paper through until it comes out the opening on the

3. Flip up the front paper guide.
 sure the front side of the metal guide is down.
4. Make sure the paper comes out straight, and then flip down the paper guide.

5. Unwrap the roll of thermal paper and place it in the compartment.

6. Close the operation panel, making sure it clicks into place.


## CHAPTER 2. ADJUSTMENTS

## [1] Adjustments

## General

Since the following adjustments and settings are provided for this model, make adjustments and/or setup as necessary.

## 1. Adjustments

## Adjustments of output voltage (FACTORY ONLY)

1. Install the power supply unit in the machine.
2. Set the recording paper and document.
3. When the document is loaded, power is supplied to the output lines. Confirm that outputs are within the limits below.

## Output voltage settings



| Output | Voltage limits |
| :---: | :---: |
| +5 V | $4.75 \mathrm{~V} \sim 5.25 \mathrm{~V}$ |
| +24 V | $24.0 \mathrm{~V} \sim 26.0 \mathrm{~V}$ |


| Connector | CNPW |
| :---: | :---: |
| 1 | Din No. |
| 2 | +5 V |
| 3 | MG |
| 4 | MG |
| 5 | +24 V |
| 6 | +24 V |

## 2. IC protectors replacement

ICPs (IC Protectors) are installed to protect the motor driver circuit. ICPs protect various ICs and electronic circuits from an overcurrent condition.

The location of ICPs are shown below:

(1) FU100 (KAB2402) is installed in order to protect IC's from an overcurrent generated in the motor drive circuit. If FU100 is open, replace it with a new one.

## 3. Settings

## Dial mode selector

DIAL mode (Soft Switch No. SWB4 DATA No. 2)
(step 1) Select "OPTION SETTING".

$$
\begin{aligned}
& \text { KEY : } \quad \text { FUNCTION 4 } \\
& \text { DISPLAY: } \text { OPTION SETTING } \Rightarrow \text { PRESS } * \text { OR \# }
\end{aligned}
$$

(step 2) Select "DIAL MODE".

(step 3) Select, using "1" or "2".
KEY: (1)
DISPLAY: TONE SELECTED
KEY:
DISPLAY: PULSE SELECTED
(step 4) End, using the "STOP" key.


## 4. Volume setting

You can adjust the volume of the speaker, ringer, and handset using the VOLUME key.
(1) Speaker
(1) Press the SPEAKER key.
(2) Press the VOLUME key one or more times to select the desired level.

The display will show:

## SPEAKER VOLUME

(3) Press the SPEAKER key once again to turn off the speaker.
(2) Handset
(1) Lift the handset.
(2) Press the VOLUME key to select the desired level.

The display will show:
RECEIVER VOLUME
(3) Replace the handset.

- Note: The handset volume reverts to medium each time you hang up.
(3) Ringer
(1) Press the VOLUME key to select the desired volume. (Make sure the SPEAKER key has not been pressed and the handset is not lifted.)

The display will show:

## RINGER VOLUME

(2) If you want to turn off the ringer, continue to press the VOLUME key until RINGER OFF: OK? appears in the display, and then press the START key.

## [2] Diagnostics and service soft switch

## 1. Operating procedure

## (1) Entering the diagnostic mode

Press FUNC $\rightarrow 9 \rightarrow \forall \rightarrow 8 \rightarrow \# \rightarrow 7$, and the following display will appear.
ROM Ver. FZGO K After 2 sec : DIAG MODE

## FZGO *

Then press the START key and country name selected by country select will appear. Select the desired item with the $\nexists$ key or the $\#$ key or select with the direct key. Enter the mode with the START key.
(Diag•specifications)


If the diag mode cannot be set, repeat the diag mode operation, performing the following operation.
After the power is turned on and "WAIT A MOMENT" is indicated, press the STOP key.


In relation with the process response (request from Production Engineering) "WAIT A MOMENT" clock indication may appear depending on STOP key timing. If the STOP key is held down, "MEMORY CLEAR?" appears.

## 2. Diagnostic items

| ITEM <br> No. | DIRECT <br> key | Contents |  |
| :---: | :---: | :--- | :--- |
| 1 | - | SOFT SWITCH MODE | Soft switches are displayed and changed. List can be output. |
| 2 | A | ROM \& RAM CHECK | ROM is sum-checked, and RAM is matched. Result list is output. |
| 3 | - | AGING MODE | 10 sheets of check patterns are output every 5 minutes per sheet. |
| 4 | - | PANEL CKECK MODE | Panel keys are tested. Result list is output. |
| 5 | B | CHECK PATTERN | 2 sheets of check patterns are output. |
| 6 | C | SIGNAL SEND MODE | Various signals of FAX communication are output. |
| 7 | - | MEMORY CLEAR | Back-up memory is cleared, and is set at delivery. |
| 8 | - | SHADING MODE | Shading compensation is performed in this mode. |
| 9 | D | ALL BLACK PRINT | To check the print head, whole dots are printed over the interval of 2 m. |
| 10 | - | AUTO FEEDER MODE | Insertion and discharge of document are tested. |
| 11 | - | ENTRY DATA RECEIVE | Registered content is received, and its list is output. |
| 12 | - | MESSAGE PRINT | The display message of each language is printed out together with the English equivalent. |
| 13 | - | COUNTRY SELECT | The software parameter that it agreed in each country name is set up. |
| 14 |  |  |  |
| 15 |  |  |  |

## 3. Diagnostic items description

## 3. 1. Soft switch mode

The soft switches are provided so that each operation mode can be set by using the operation panel.
In this mode, these switches can be checked and set.
The contents of these switches are backed up.
The available soft switches are SW-A1 to SW-K1.
The content of soft switches is shown in page 2-5 to 2-17.
The contents are set to factory default settings.

## 3. 2. ROM \& RAM check

ROM executes the sum check, and RAM executes the matching test.
The result will be notified with the number of short sounds of the buzzer as well as by printing the ROM \& RAM check list.
Number of short sounds of buzzer $0 \rightarrow$ No error

$$
\begin{aligned}
& 1 \rightarrow \text { ROM error } \\
& 2 \rightarrow \text { RAM error (32Kbyte) }
\end{aligned}
$$

## 3. 3. Aging mode

If any document is first present, copying will be executed sheet by sheet. If no document is present, the check pattern will be printed sheet by sheet. This operation will be executed at a rate of one sheet per $5 \mathrm{~min}-$ utes, and will be ended at a total of 10 sheets.

## 3. 4. Panel check mode

This mode is used to check whether each key operates properly or not. Press the key on the operation panel, and the key will be displayed on the display. Therefore, press all keys. At this time,finally press the STOP key.
When the STOP key is pressed, the keys which are not judged as "pressed" will be printed on the result list.

- LED part of the contact image sensor (CIS) is kept on during the term from when "START" of the panel test mode to end with the STOP key.


## 3. 5. Check pattern

This mode is used to check the status of print head. Two sheets of check pattern are printed. The following information of check pattern is printed.
(1) Vertical stripes (alternate white and black lines) Approx. 35 mm
(2) Full black

Approx. 70 mm
Approx. 35 mm


RANK 0 or 1
Note:
There is a selection RANK 0 or 1 depending on resistance value of the thermal head. RANK 0 or RANK 1 is printed at the tail of check pattern to identify.

## 3. 6. Signal send mode

This mode is used to send various signals to the circuit during FAX communication. Every push of START key sends a signal in the following sequence. Moreover, the signal sound is also output to the speaker when the line monitor of the soft switch is on.
[1] No signal (CML signal turned on)
[2] 9600bps
[3] 7200bps
[4] 4800bps
[5] 2400bps
[6] 300bps (FLAG)
[7] 2100 Hz (CED)
[8] 1100 Hz (CNG)
[9] Pseudo Ring (models with auto TEL/FAX changeover function)
[10] END

## 3. 7. Memory clear

This mode is used to clear the backup memory and to reset to the factory default settings.
The content of each setting will be cleared.
Note: Be sure to execute the memory clear mode whenever you change the country select setting. The default settings of the soft switches vary according to the destinations. Therefore, if you do not execute the memory clear after changing the country select setting, some functions may not work.

## 3. 8. Shading mode

The mode is used for the shooting compensation. For reading, set up the special original paper.
The shooting compensation memorizes the reference data of white and black for reading.

Moreover, the memorized data is not erased even if memory clear mode is executed.

## 3. 9. All black print

This mode is used to check the state of the printing head and intentionally overheat it. Whole dots are printed over the interval of 2 m . If it is overheated or the printing sheet is jammed, press STOP key for the end.

## 3. 10. Auto feeder mode

In this mode, a document is inserted and discharged to check the auto feed function.
After this mode is started, set a document, and the document feed will be automatically tested.

### 3.11. Entry data send

This mode is used to send the registered data to the other machine and to make the other machine copy the registered content. Before sending in this mode, it is necessary to set the other machine at the entry data receive mode.

The contents to be sent are as follows (the machine prints each list after the transmission has completed):

1. Telephone list data
2. Sender (cover sheet) register data
3. Optional setting content
4. Soft switch content
5. Junk fax number list
6. Country setting content

## 3. 12. Entry data receive

This mode is used to receive the registered data from the other machine and to make your machine register the received data. Before receiving in this mode, it is necessary to set the other machine at the entry data send mode.
After receiving is completed, the machine prints the following lists:

1. Telephone list data
2. Soft switch list
3. Junk fax number list

## 3. 13. Message print

In this mode, all the message data, which are used for displaying indication and list print, are printed as a contrast table of the selected language and English.

## 3. 14. Cutter aging

This mode is used to consecutively cut the recording paper about 10 mm long and to display the number of cutting times.
(The number of cutting times is cumulatively counted unless you execute the memory clear.)
The operation is stopped in the following cases:

1. Hold down the stop key. (The cutter aging is stopped.)
2. No recording paper. (The cut operation is stopped.)
3. Recording paper jam. (The cut operation is stopped.)

## 3. 15. Country select

This mode is used to set line connecting parameters which correspond to each destination.
When the country select mode is selected, and then the START key is pressed, the destination (country name) currently set will be displayed. By pressing the \# or $*$ key, selectable destinations (country names) are displayed. When the destination (country name) you want to choose is displayed, press the START key. Each parameter will be stored in RAM.
Destinations (Country names) you can select are as follows:

| COUNTRY |  | COUNTRY CODE |
| :--- | ---: | :---: |
| U.S. A | (U) | 00 |
| CANADA | (C) | 01 |
| LATIN AMERICA |  | LA/LU) |
| ARGENTINA (AR) |  | 02 |

Note: Be sure to execute the memory clear mode whenever you change the country select setting. The default settings of the soft switches vary according to the destinations. Therefore, if you do not execute the memory clear after changing the country select setting, some functions may not work.
Do not set a country select setting which is different from that of the destination of the machine. Some functions will not work because the function and the PWB specifications are different.

## 4. How to make soft switch setting

To enter the soft switch mode, press the following key entries in sequence.


FO-77U
UX-66U

## 5. Soft switch description

## - Soft switch




FO-77U
UX-66U



FO-77U
UX-66U

| $\begin{array}{\|l} \text { SW } \\ \text { NO. } \end{array}$ | $\begin{aligned} & \text { DATA } \\ & \text { NO. } \end{aligned}$ | ITEM | Switch setting and function |  |  |  |  | Initial setting | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 |  | 0 |  |  |  |  |
| $\begin{array}{\|c} \text { SW } \\ \text { I } \\ \text { F1 } \end{array}$ |  | DTMF detection time |  | 50 ms | 80 ms | 100ms | 120 ms |  |  |
|  | 1 |  | No. 1 | 0 | 0 | 1 | 1 | 0 |  |
|  | 2 |  | No. 2 | 0 | 1 | 0 | 1 | 0 |  |
|  | 3 | Protection of remote reception $(5 * *)$ detection | Yes |  | No |  |  | 1 |  |
|  | 4 | Remote reception with GE telephone | Compatible |  | Not compatible |  |  | 1 |  |
|  | $5$ | Remote operation code figure by external TEL (0~9) | No. = |   |  |  |  | $\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$ |  |
| $\begin{gathered} \text { SW } \\ \text { I } \\ \text { F2 } \end{gathered}$ | 1 | CNG detection in STAND-BY mode | Yes |  | No |  |  | 0 |  |
|  | 23 | Number of CNG detect(AM mode) |  | 1 pulse | 2 pulses | 3 pulses | 4 pulses | 0 |  |
|  |  |  | No. 2 | 0 | 0 | 1 | 1 |  |  |
|  |  |  | No. 3 | 0 | 1 | 0 | 1 | 1 |  |
|  | 4 | Number of CNG detect(STAND-BY mode) |  | 1 pulse | 2 pulses | 3 pulses | 4 pulses |  |  |
|  |  |  | No. 4 | 0 | 0 | 1 | 1 | 0 |  |
|  | 5 |  | No. 5 | 0 | 1 | 0 | 1 | 1 |  |
|  | 6 | Reserved |  |  |  |  |  | 0 |  |
|  | 7 | Reserved |  |  |  |  |  | 0 |  |
|  | 8 | Reserved |  |  |  |  |  | 0 |  |
| $\begin{gathered} \text { SW } \\ \text { I } \\ \text { G1 } \end{gathered}$ | 1 | Reserved |  |  |  |  |  | 0 |  |
|  | 2 | Reserved |  |  |  |  |  | 0 |  |
|  | 3 | Reserved |  |  |  |  |  | 0 |  |
|  | 4 | Reserved |  |  |  |  |  | 0 |  |
|  | 5 | Reserved |  |  |  |  |  | 0 |  |
|  | 6 | Reserved |  |  |  |  |  | 0 |  |
|  | 7 | Reserved |  |  |  |  |  | 0 |  |
|  | 8 | Reserved |  |  |  |  |  | 0 |  |
| $\begin{gathered} \text { SW } \\ \text { I } \end{gathered}$ | 1 | Reserved |  |  |  |  |  | 0 |  |
|  | 2 | Reserved |  |  |  |  |  | 0 |  |
|  | 3 | Reserved |  |  |  |  |  | 0 |  |
|  | 4 | Reserved |  |  |  |  |  | 0 |  |
|  | 5 | Reserved |  |  |  |  |  | 0 |  |
|  | 6 | Reserved |  |  |  |  |  | 0 |  |
|  | 7 | Reserved |  |  |  |  |  | 0 |  |
|  | 8 | Reserved |  |  |  |  |  | 0 |  |
| $\begin{array}{\|c} \text { SW } \\ \text { I } \\ \text { G3 } \end{array}$ | 1 | Reserved |  |  |  |  |  | 0 |  |
|  | 2 | Reserved |  |  |  |  |  | 0 |  |
|  | 3 | Reserved |  |  |  |  |  | 0 |  |
|  | 4 | Reserved |  |  |  |  |  | 0 |  |
|  | 5 | Reserved |  |  |  |  |  | 0 |  |
|  | 6 | Reserved |  |  |  |  |  | 0 |  |
|  | 7 | Reserved |  |  |  |  |  | 0 |  |
|  | 8 | Reserved |  |  |  |  |  | 0 |  |
| $\begin{gathered} \text { SW } \\ 1 \\ \text { G4 } \end{gathered}$ | 1 | Reserved |  |  |  |  |  | 0 |  |
|  | 2 | Reserved |  |  |  |  |  | 0 |  |
|  | 3 | Reserved |  |  |  |  |  | 0 |  |
|  | 4 | Reserved |  |  |  |  |  | 0 |  |
|  | 5 | Reserved |  |  |  |  |  | 0 |  |
|  | 6 | Reserved |  |  |  |  |  | 0 |  |
|  | 7 | Reserved |  |  |  |  |  | 0 |  |
|  | 8 | Reserved |  |  |  |  |  | 0 |  |


| $\begin{aligned} & \text { SW } \\ & \text { NO. } \end{aligned}$ | DATA NO. | ITEM | Switch setting and function |  | Initial setting | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 0 |  |  |
| $\begin{gathered} \text { SW } \\ \text { I } \\ \text { H1 } \end{gathered}$ | 1 | Reserved |  |  | 0 |  |
|  | 2 | Reserved |  |  | 0 |  |
|  | 3 | Reserved |  |  | 0 |  |
|  | 4 | Reserved |  |  | 0 |  |
|  | 5 | Reserved |  |  | 0 |  |
|  | 6 | Reserved |  |  | 0 |  |
|  | 7 | Reserved |  |  | 0 |  |
|  | 8 | Reserved |  |  | 0 |  |
| $\begin{array}{\|c} \text { SW } \\ 1 \\ \text { H2 } \end{array}$ | 1 | Reserved |  |  | 0 |  |
|  | 2 | Reserved |  |  | 0 |  |
|  | 3 | Reserved |  |  | 0 |  |
|  | 4 | Reserved |  |  | 0 |  |
|  | 5 | Reserved |  |  | 0 |  |
|  | 6 | Reserved |  |  | 0 |  |
|  | 7 | Reserved |  |  | 0 |  |
|  | 8 | Reserved |  |  | 0 |  |
| $\begin{gathered} \text { SW } \\ \text { I } \\ 11 \end{gathered}$ | 1 | Reserved |  |  | 0 |  |
|  | 2 | Reserved |  |  | 0 |  |
|  | 3 | Reserved |  |  | 0 |  |
|  | 4 | Reserved |  |  | 0 |  |
|  | 5 | Reserved |  |  | 0 |  |
|  | 6 | Reserved |  |  | 0 |  |
|  | 7 | Reserved |  |  | 0 |  |
|  | 8 | Reserved |  |  | 0 |  |
| $\begin{gathered} \text { SW } \\ 1 \\ 12 \end{gathered}$ | 1 | Reserved |  |  | 0 |  |
|  | 2 | Reserved |  |  | 0 |  |
|  | 3 | Reserved |  |  | 0 |  |
|  | 4 | Reserved |  |  | 0 |  |
|  | 5 | Reserved |  |  | 0 |  |
|  | 6 | Reserved |  |  | 0 |  |
|  | 7 | Reserved |  |  | 0 |  |
|  | 8 | Reserved |  |  | 0 |  |
| $\begin{gathered} \text { SW } \\ \text { I } \\ \text { I3 } \end{gathered}$ | 1 | Reserved |  |  | 0 |  |
|  | 2 | Reserved |  |  | 0 |  |
|  | 3 | Reserved |  |  | 0 |  |
|  | 4 | Reserved |  |  | 0 |  |
|  | 5 | Reserved |  |  | 0 |  |
|  | 6 | Reserved |  |  | 0 |  |
|  | 7 | Reserved |  |  | 0 |  |
|  | 8 | Reserved |  |  | 0 |  |
| $\begin{gathered} \text { SW } \\ \text { I } \\ 14 \end{gathered}$ | 1 | Reserved |  |  | 0 |  |
|  | 2 | Reserved |  |  | 0 |  |
|  | 3 | Reserved |  |  | 0 |  |
|  | 4 | Reserved |  |  | 0 |  |
|  | 5 | Reserved |  |  | 0 |  |
|  | 6 | Reserved |  |  | 0 |  |
|  | 7 | Reserved |  |  | 0 |  |
|  | 8 | Reserved |  |  | 0 |  |

FO-77U
UX-66U

| $\begin{array}{\|l} \hline \text { SW } \\ \text { NO. } \end{array}$ | $\begin{aligned} & \text { DATA } \\ & \text { NO. } \end{aligned}$ | ITEM | Switch setting and function |  |  |  |  | Initial setting | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 |  |  | 0 |  |  |  |
| $\begin{gathered} \text { SW } \\ 1 \\ 15 \end{gathered}$ | 1 | Reserved |  |  |  |  |  | 0 |  |
|  | 2 | Reserved |  |  |  |  |  | 0 |  |
|  | 3 | Reserved |  |  |  |  |  | 0 |  |
|  | 4 | Reserved |  |  |  |  |  | 0 |  |
|  | 5 | Reserved |  |  |  |  |  | 0 |  |
|  | 6 | Reserved |  |  |  |  |  | 0 |  |
|  | 7 | Reserved |  |  |  |  |  | 0 |  |
|  | 8 | Reserved |  |  |  |  |  | 0 |  |
| $\begin{gathered} \text { SW } \\ 1 \\ 16 \end{gathered}$ | 1 | Reserved |  |  |  |  |  | 0 |  |
|  | 2 | Reserved |  |  |  |  |  | 0 |  |
|  | 3 | Reserved |  |  |  |  |  | 0 |  |
|  | 4 | Reserved |  |  |  |  |  | 0 |  |
|  | 5 | Reserved |  |  |  |  |  | 0 |  |
|  | 6 | Reserved |  |  |  |  |  | 0 |  |
|  | 7 | Reserved |  |  |  |  |  | 0 |  |
|  | 8 | Reserved |  |  |  |  |  | 0 |  |
| $\begin{gathered} \text { SW } \\ 1 \\ 17 \end{gathered}$ | 1 | Reserved |  |  |  |  |  | 0 |  |
|  | 2 | Reserved |  |  |  |  |  | 0 |  |
|  | 3 | Reserved |  |  |  |  |  | 0 |  |
|  | 4 | Reserved |  |  |  |  |  | 0 |  |
|  | 5 | Reserved |  |  |  |  |  | 0 |  |
|  | 6 | Reserved |  |  |  |  |  | 0 |  |
|  | 7 | Reserved |  |  |  |  |  | 0 |  |
|  | 8 | Reserved |  |  |  |  |  | 0 |  |
| $\begin{gathered} \text { SW } \\ 1 \\ 18 \end{gathered}$ | 1 | Reserved |  |  |  |  |  | 0 |  |
|  | 2 | Reserved |  |  |  |  |  | 0 |  |
|  | 3 | Reserved |  |  |  |  |  | 0 |  |
|  | 4 | Reserved |  |  |  |  |  | 0 |  |
|  | 5 | Reserved |  |  |  |  |  | 0 |  |
|  | 6 | Reserved |  |  |  |  |  | 0 |  |
|  | 7 | Reserved |  |  |  |  |  | 0 |  |
|  | 8 | Reserved |  |  |  |  |  | 0 |  |
| $\begin{gathered} \text { SW } \\ 1 \\ \text { J1 } \end{gathered}$ | 1 | Sender's phone number setting | Cannot ch |  | Cha | allowed |  | 0 |  |
|  | 2 | Summer time setting (Daylight saving) | No |  | Yes |  |  | 1 | OPTION |
|  | 3 | Ringer volume |  | Off | Low | Middle | High | 10 | OPTION |
|  |  |  | No. 3 | 0 | 0 | 1 | 1 |  |  |
|  |  |  | No. 4 | 0 | 1 | 0 | 1 |  |  |
|  | 5 | Speaker volume |  | Low | Low | Middle | High | 1 | OPTION |
|  |  |  | No. 5 | 0 | 0 | 1 | 1 |  |  |
|  |  |  | No. 6 | 0 | 1 | 0 | 1 | 0 |  |
|  | 7 | Reserved |  |  |  |  |  | 0 |  |
|  | 8 | Reserved |  |  |  |  |  | 0 |  |
| $\begin{gathered} \text { SW } \\ 1 \\ \text { J2 } \end{gathered}$ | 12 | Handset receiver volume |  | Middle | Middle | Middle | High | 1 | OPTION |
|  |  |  | No. 1 | 0 | 0 | 1 | 1 |  |  |
|  |  |  | No. 2 | 0 | 1 | 0 | 1 | 0 |  |
|  | 3 | Reserved |  |  |  |  |  | 0 |  |
|  | 4 | Reserved |  |  |  |  |  | 0 |  |
|  | 5 | Reserved |  |  |  |  |  | 0 |  |
|  | 6 | Reserved |  |  |  |  |  | 0 |  |
|  | 7 | Reserved |  |  |  |  |  | 0 |  |
|  | 8 | Reserved |  |  |  |  |  | 0 |  |



## - Soft switch function description

SW-A1 No. 1 Protect from echo
Used to protect from echo in reception.
SW-A1 No. 2 Forced 4800BPS reception
When line conditions warrant that receptions take place at 4800 BPS repeatedly.
It may improve the success of receptions by setting at 4800BPS.
This improves the receiving document quality and reduces handshake time due to fallback during training.

## SW-A1 No. 3 Footer print

When set to " 1 ", the date of reception, the sender machine No., and the page No. are automatically recorded at the end of reception.

## SW-A1 No. 4 Length limitation of copy/send/receive

Used to set the maximum page length.
To avoid possible paper jam, the page length is normally limited to 0.6 meter for copy or transmit, and 1.5 meters for receive.
It is possible to set it to "No limit" to transmit a long document, such as a computer print form, etc. (In this case, the receiver must also be set to no limit.)

## SW-A1 No. 5 CSI transmission

(CSI TRANSMISSION) is a switch to set whether the machine sends or does not send the signal (CSI signal) informing its own telephone No. to the remote fax machine when information is received. When "nonsending" is set, the telephone No. is not output on the remote transmitting machine if the remote transmitting machine has the function to display or print the telephone No. of receiving machine, using this CSI signal.
SW-A1 No. 6 DIS receive acknowledgment during G3 transmission
Used to make a choice of whether reception of DIS(NSF) is acknowledged after receiving two DISs(NSFs) or receiving one DIS (two NSFs). It may be useful for overseas communication to avoid an echo suppression problem, if set to 1 .

SW-A1 No. 7 Non modulated carrier for V29 transmission mode
Though transmission of a nonmodulated carrier is not required for transmission by the V29 modem according to the CCITT Recommendation, it may be permitted to a send nonmodulated carrier before the image signal to avoid an echo suppression problem.
It may be useful for overseas communication to avoid an echo suppression problem, if set to 1 .
SW-A1 No. 8 Reserved
Set to "1".

## SW-A2 No. 1 ~ No. 4 Modem speed

Used to set the initial modem speed. The default is 9600BPS. It may be necessary to program it to a slower speed when frequent line fallback is encountered, in order to save the time required for fallback procedure.

SW-A2 No. 5 Reserved
Set to "1".

## SW-A2 No. 6 H2 mode

Used to determine reception of H 2 mode ( 15 sec transmission mode). When set to OFF, H2 mode reception is inhibited even though the transmitting machine has H 2 mode function.
SW-A2 No. 7 Communication error treatment in RTN sending mode (Reception)
Used to determine communication error treatment when RTN is sent by occurrence of a received image error in G3 reception. When it is set to " 1 ", communication error is judged as no error.

## SW-A2 No. 8 CNG transmission

When set to " 0 ", this model allows CNG transmission by pressing the Start key in the key pad dialing mode. When set to "1", CNG transmission in the key pad dialing mode cannot be performed. In either case, CNG transmission can be performed in the auto dial mode.

## SW-A3 No. 1, No. 2 CED tone signal interval

For international communication, the 2100 Hz CED tone may act as an echo suppression switch, causing a communication problem.
Though SW-A3 No. 1 and No. 2 are normally set to 0 , this selfing is used to change the time between the CED tone signal to eliminate the communication caused by echo.


## SW-A3 No. 3 MR coding

Used to select the MR coding enable or disable.
SW-A3 No. 4 ~ No. 8 Reserved
Set to "0".
SW-A4 No. 1 ~ No. 5 Signal transmission level ( $0 \sim-31 \mathrm{dBm}$ setting by 1 dBm step)
Used to control the signal transmission level in the range of -0 dB to $-31 d B$.
The factory setting is at -10 dB (MODEM output).
SW-A4 No. 6 Protocol monitor (Error Print)
If set to "1", protocol is printed at communication error.

## SW-A4 No. 7 Protocol monitor

Normally set to " 0 ". If set to "1", communication can be checked, in case of trouble, without using a G3 tester or other tools.
When communication FSK data transmission or reception is made, the data is taken into the buffer. When communication is finished, the data is analyzed and printed out. When data is received with the line monitor (SW4-No. 8) set to "1" the reception level is also printed out.

## SW-A4 No. 8 Line monitor

Normally set to " 0 ". If set to " 1 ", the transmission speed and the reception level are displayed on the LCD. Used for line tests.

## SW-A5 No. 1, No. 2 Digital equalization setting (Reception)

Line equalization when reception is to be set according to the line characteristics.
Setting should be made according to distance between the telephone and the telephone company central switching station.

## SW-A5 No. 3, No. 4 Digital equalization setting (Transmitter)

Line equalization when transmission is to be set according to the line characteristics.
Setting should be made according to distance between the telephone and the telephone company central switching station.

## SW-A5 No. 5, No. 6 Digital equalization setting

(Reception for Caller ID)
Line equalization when reception for CALLER ID is to be set according to the line characteristics.
Setting should be made according to distance between the telephone and the telephone company central switching station.

## SW-A5 No. 7 Error criterion

Used to select error criterion for sending back RTN when receiving image data.

## SW-A5 No. 8 Anti junk fax check

When using the Anti junk fax function, set to " 1 ".
SW-A6 No. 1 Auto gain control(MODEM)
When this mode is enabled, if the reception signal level is under 31 dBm , the modem itself controls the signal gain automatically.

## SW-A6 No. 2 End buzzer

Setting this bit to 0 will disable the end buzzer (including the error buzzer/ on-hook buzzer).
SW-A6 No. 3 Disconnect the line when DIS is received in RX mode
Bit1 $=0$ : When DIS signal is received during $R X$ mode, disconnect the line immediately.
Bit1 = 1 : When DIS signal is received during RX mode, wait for the next signal.

## SW-A6 No. 4 Equalizer freeze control (MODEM)

This switch is used to perform reception operation by fixing the equalizer control of modem for the line which is always in unfavorable state and picture cannot be received.

* Usually, the control is executed according to the state of line where the equalizer setting is changed always.


## SW-A6 No. 5 Equalizer freeze 7200BPS only

Setting which specifies SW-A6 No. 4 control only in condition of 7200BPS modem speed.

## SW-A6 No. 6 CNG transmission in manual TX mode

When set to "1", fax transmit the CNG signal in case of manual transmissiom mode (User press the START key after waiting for the fax answering signal from handset or speaker).

SW-A6 No. 7 Initial compression scheme for sharp fax in TX mode When set to " 0 ", if the other fax is Sharp model, fax transmit the document by H 2 mode.
When set to " 1 ", even if the other fax is Sharp model, fax transmit the document by MR mode.

## SW-A6 No. 8 Modem speed automatic down when RX level is under

 $-40 \mathrm{dBm}$When set to " 1 ", if fax signal level is under -40 dBm during reception, machine selects the slower modem speed automatically.
It is effective when noises occur on the received document due to the long distance communications.

## SW-A7 No. 1, No. 2 EOL (End Of Line) detect timer

Used to make a choice of whether to use the 5 or 13 or 20 or 25 seconds timer for detection of EOL.
This is effective to override communication failures with some facsimile models that have longer EOL detection.

SW-A7 No. 3 ~ No. 8 Reserved
Set to "0".

## SW-B1 No. 1 Hold key

Used to set YES/NO of holding function by the HOLD key.

## SW-B1 No. 2 Auto dial fax transmission by REDIAL key

When set to " 1 ", if original documents are set to the feeder and you press REDIAL key, machine will dial and transmit the ducuments automatically.
When set to " 0 ", operator needs to press the START key after FAX reception tone is heard.

## SW-B1 No. 3 Reserved

Set to "0".
SW-B1 No. 4 ~ No. 8 Recall interval
( $0 \sim 15.5 \mathrm{~min}$ setting by 0.5 min step)
Choice is made for a redial interval for speed and rapid dial calls.
Use a binary number to program this with 0.5 min steps. If set to 0 accidentally, 0.5 min will be assumed.

SW-B2 No. 1 ~No. 4 Recall times (0~15times setting)
Choice is made as to how many redials there should be.
SW-B2 No. 5 Dial tone detection (Before auto dial)
Used to set YES/NO of dial tone detection in auto dialing.

## SW-B2 No. 6 Reserved

Set to "0".
SW-B2 No. 7 Busy tone detection (After auto dial)
Used to set YES/NO of busy tone detection after auto dialing.
SW-B2 No. 8 Busy tone detection pulse number (After auto dial) Used for detection of busy tone in 2 or 4 pulses.

SW-B3 No. 1, No. 2 Waiting time after dialing
This is waiting time for the opponent's signals after dialing. $45 / 55 / 90 / 140$ seconds settings are available.

## SW-B3 No. 3 ~ No. 8 Reserved

Set to "0".
SW-B4 No. 1 Dialing pause (sec/pause)
Pauses can be inserted between telephone numbers of direct dial connection. Selection of 4 sec or 2 sec pause is available.

## SW-B4 No. 2 Dial mode

When using the pulse dial, set to 0 . When using the tone dial, set to 1 .

## SW-B4 No. 3 Pulse $\rightarrow$ Tone change function by $\ngtr$ key

When setting to 1 , the mode is changed by pressing the $\star$ key from the pulse dial mode to the tone dial mode.
SW-B4 No. 4 Dial pulse make/break ratio (\%)
When using the $33 \%$ make ratio pulse dial, set to 0 .
When using the $40 \%$ make ratio pulse dial, set to 1 .
SW-B4 No. 5, No. 6 Auto dial mode Delay timer of before line connect
Delay time between the dial key input and line connection under the auto dial mode.


No.5=0 No.6=0: Osec
No.5=0 No.6=1:1.5sec
No.5=1 No.6=0:3.0sec
No.5=1 No.6=1:4.5sec
SW-B4 No. 7, No. 8 Reserved
Set to "0".

SW-B5 No. 1 ~ No. 3 Auto dial mode Delay timer of after line connect
Delay time between the line connection and dial data output under the auto dial mode.
This setting is available when dial tone detection(SW-B2 No. 5) is set to "NO".


| No. 1 | No. 2 | No. 3 |  |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1.7 sec |
| 0 | 0 | 1 | 2.0 sec |
| 0 | 1 | 0 | 2.5 sec |
| 0 | 1 | 1 | 3.0 sec |
| 1 | 0 | 0 | 3.6 sec |
| 1 | 0 | 1 | 4.0 sec |
| 1 | 1 | 0 | 5.5 sec |
| 1 | 1 | 1 | 7.0 sec |

SW-B5 No. 4 Fax signal detection after telephone mode dial
When set to "1", if machine detects the fax answering signal after telephone calling (handset off-hook or speaker mode dial), machine starts to receive the documents automatically.

SW-B5 No. 5 Recalling fixed only one time when dialing was unsuccessful without detecting busy tone signal
When set to " 1 ", if machine does not detect the busy tone after auto dialing and dialing is unsuccessful, machine will try to recall only one time.
SW-B5 No. 6 ~ No. 8 Reserved
Set to "0".
SW-B6 No. 1 ~ No. 5 DTMF signal transmission level
(Low frequency $0 \sim 15.5 \mathrm{dBm}$ setting by 0.5 dBm step)
The transmission level of DTMF signal is adjusted. (lower frequency) 00000: 0dBm
$\downarrow$
11111: $-15.5 \mathrm{dBm}(-0.5 \mathrm{dBm} \times 31)$
SW-B6 No. 6 ~ No. 8 Reserved
Set to "0".
SW-B7 No. 1 ~ No. 5 DTMF signal transmission level
(High frequency $0 \sim 15.5 \mathrm{dBm}$ setting by 0.5 dBm step)
The transmission level of DTMF signal is adjusted. (higher frequency) 00000: 0dBm
$\downarrow$
11111: $-15.5 \mathrm{dBm}(-0.5 \mathrm{dBm} \times 31)$
SW-B7 No. 6 ~ No. 8 Reserved
Set to "0".

## SW-C1 No. 1, No. 2 Reading slice (Binary)

Used to determine the set value of reading density in standard/fine/su-per-fine mode.
The standard setting is "00"(Factory setting is "00").
SW-C1 No. 3, No. 4 Reading slice (Half tone)
Used to determine the set value of reading density in half tone mode. The standard setting is "00"(Factory setting is "00").

## SW-C1 No. 5 Line density selection

Used to set the transmission mode which is automatically selected when the Resolution key is not pressed. In the copy mode, however, the fine mode is automatically selected unless the Resolution key is manually set to another mode.

## SW-C1 No. 6 Reserved

Set to "0".

## SW-C1 No. 7 MTF correction in half tone mode

This allows selection of MTF correction (dimness correction) in the half tone mode.
When "NO" (=1) is selected, the whole image becomes soft and mild. Clearness of characters will be reduced. Normally set to "YES" (=0).

## SW-C1 No. 8 Reserved

Set to "0".

## SW-D1 No. 1 ~ No. 4 Number of rings for auto receive (0~15rings setting)

When the machine is set in the auto receive mode, the number of rings before answering can be selected. It may be set from one to nine rings using a binary number. Since the facsimile telephone could be used as an ordinary telephone if the handset is taken off the hook, it should be programmed to the user's choice. If the soft switch was set to 1 , direct connection is made to the facsimile.
If a facsimile calling beep was heard when the handset is taken off the hook, press the START key and put the handset on the hook to have the facsimile start receiving. If it was set to 0 accidentally, receive ring is set to 1.
NOTE: If the machine is set to answer after a large number of rings, it may not be able to receive faxes successfully.
If you have difficulty receiving faxes, reduce the number of rings to a maximum of 5 .

SW-D1 No. 5 Automatic switching manual to auto receive function
This soft switch is used to select whether the machine should switch to the auto receive mode after 5 rings in the manual receive mode or remain in the same way as SW-D1 No. 1, No. 2, No. 3 and No. 4 "0"1"0"1"(5 rings).

## SW-D1 No. 6, No. 7 Cl detect frequency

Detection frequency of ring signal for auto reception is set.
When set to No. 6=0, No. 7=0, frequency is set to PTT recommendation. When set to No. $6=0$, No. $7=1$, frequency is set to 11.5 Hz or more. When set to No. $6=1$, No. $7=0$, frequency is set to 13.0 Hz or more. When set to No. $6=1$, No. $7=1$, frequency is set to 20.0 Hz or more.

## SW-D1 No. 8 Reserved

Set to "0".

## SW-D2 No. 1 ~ No. 3 Distinctive ringing setting

When the ringing setting is turned off, all of the Cl signals are received. When any of the standard, and ring patterns 1 through 3 is selected for the ringing setting, only the selected Cl signal is received.
Cl signal patterns
The Cl signal patterns consists of the standard pattern, and ring patterns 1 through 7 . The standard pattern is the conventional one.


SW-D2 No. 4, No. 5 Reserved
Set to "0".
SW-D2 No. 6 Caller ID Function
Used for Caller ID function.
SW-D2 No. 7, No. 8 Reserved
Set to "0".

SW-D3 No. 1 ~ No. 5 CI off detection timer ( $0 \sim 1550 \mathrm{~ms}$ setting by 50 ms step)
Set the minimum time period of Cl signal interruption which affords to be judged as a CI OFF section with 50 ms steps.
(Example)


01110 (50ms~14) : 700ms(Cl interruption>700ms:Judged as a CI OFF section)
The section 1 is not judged as a CI OFF section, the Cl signal A is counted as one signal. The section 2 is judged as a CI OFF section, the Cl signal B is considered as the second signal.
00111 ( $50 \mathrm{~ms} \sim 7$ ) : $350 \mathrm{~ms}(\mathrm{Cl}$ interruption $>350 \mathrm{~ms}: J$ udged as a Cl OFF section)
The section 1 is judged as a CI OFF section, and the Cl signal A is counted as two signals. The section 2 is judged as a CI OFF section, and the Cl signal B is considered as the third signal.
SW-D3 No. 6 ~ No. 8 Reserved
Set to "0".
SW-D4 No. 1 ~ No. 6 DTMF type Caller ID RX level ( $0 \sim-44 \mathrm{dBm}$ setting by 1 dBm step)
This is used for DTMF type Caller ID detection level setting.
SW-D4 No. 7, No. 8 Reserved
Set to "0".
SW-E1 No. 1 ~ No. 8 Reserved
Set to "0".
SW-E2 No. 1 ~ No. 8 Reserved
Set to "0".

## SW-E3 No. 1 ~ No. 8 Reserved

Set to "0".

## SW-F1 No. 1, No. 2 DTMF detection time

Used to set detect time of DTMF (Dual Tone Multi Frequency) used in remote reception $(5 * *)$.
The longer the detect time is, the less the error detection is caused by noises.

SW-F1 No. 3 Protection of remote reception $(5 \times \nless)$ detection
Used to set the function of remote reception $(5 * *)$. When set to "1", the remote reception function is disabled.

## SW-F1 No. 4 Remote reception with GE telephone

"1": Compatible with TEL mode by GE
"0": Not compatible

- When sending $(5 \times \nless)$ for remote reception with a GE manufactured telephone remote reception may not take place because of special specifications in their DTMF.
To overcome this, a soft SW is provided to change the modem setting to allow for remote reception.
- If this soft SW is set to "1", other telephone sets may be adversely affected.

SW-F1 No. 5 ~ No. 8 Remote operation code figure by external TEL (0~9)
Remote operation codes can be changed from 0 through 9. If set to greater than 9 , it defaults to 9 . The " $5 \nsucc \nless$ " is not changed.
Ex- $7 * *$ (Default : $5 * *$ )

SW-F2 No. 1 CNG detection in STAND-BY mode
When setting to " 1 ", the CNG signal detection function during standby stops.

SW-F2 No. 2, No. 3 Number of CNG detect (AM mode)
Used for detection of CNG in 1 to 4 pulses.
SW-F2 No. 4, No. 5 Number of CNG detect (STAND-BY mode)
Used for detection of CNG in 1 to 4 pulses.
SW-F2 No. 6 ~ No. 8 Reserved
Set to "0"
SW-G1 No. 1 ~ No. 8 Reserved
Set to "0"
SW-G2 No. 1 ~ No. 8 Reserved
Set to "0"
SW-G3 No. 1 ~ No. 8 Reserved
Set to "0".
SW-G4 No. 1 ~ No. 8 Reserved
Set to "0".
SW-H1 No. 1 ~ No. 8 Reserved Set to "0".
SW-H2 No. 1 ~ No. 8 Reserved
Set to "0".
SW-I1 No. 1 ~ No. 8 Reserved Set to "0".

SW-I2 No. 1 ~ No. 8 Reserved Set to "0".

SW-I3 No. 1 ~ No. 8 Reserved
Set to "0".
SW-I4 No. 1 ~ No. 8 Reserved Set to "0".
SW-I5 No. 1 ~ No. 8 Reserved Set to "0".

SW-I6 No. 1 ~ No. 8 Reserved Set to "0".

SW-I7 No. 1 ~ No. 8 Reserved Set to "0".

SW-I8 No. 1 ~ No. 8 Reserved
Set to "0".
SW-J1 No. 1 Sender's phone number setting
Used to make a choice of whether the registered sender's phone number can be changed or not. If the switch is set to "1", new registration of the sender's phone number is disabled to prevent accidental wrong input.
SW-J1 No. 2 Summer time setting (Daylight saving)
Used to set YES/NO of automatic clock adjustment for Summer time(Daylight saving time).
SW-J1 No. 3, No. 4 Ringer Volume
Used to adjust ringing volume.
SW-J1 No. 5, No. 6 Speaker Volume
Used to adjust sound volume from a speaker.
SW-J1 No. 7, No. 8 Reserved
Set to "0".
SW-J2 No. 1, No. 2 Handset receiver volume
Used to adjust sound volume from a handset receiver volume.

## SW-J2 No. 3 ~ No. 8 Reserved

Set to "0".
SW-J3 No. 1 ~ No. 3 Communication results printout (Transaction report)
It is possible to obtain transaction results after each communication. Normally,the switch is set (No. 1:0, No. $2: 0$, No. $3: 0$ ) so that the transaction report is produced only when a communication error is encountered.
If No. 1 was set to 0 and No. 2 to 1 and No. 3 to 0 , the transaction report will be produced every time a communicaion is done, even if the communicaion was successful.
Setting No. 1 to 0 and No. 2 to 1 and No. 3 to 1 will disable this function. No transaction report printed.

## SW-J3 No. 4 Time format

When set to "0", 24 hour time format is used.
When set to "1", 12hour time format is used.

## SW-J3 No. 5 Date format

When set to " 0 ", Day-Month-Year format is used. When set to "1", Month-Day-Year format is used.

SW-J3 No. 6 ~ No. 8 Reserved
Set to "0".
SW-K1 No. 1 Entering diag mode by pressing SPEED key
A bit which is used in the production process only. When the SPEED key is pressed, the switch is changed from the stand-by state to the diag mode.

SW-K1 No. 2 ~ No. 8 Reserved
Set to "0".

## [3] Troubleshooting

Refer to the following actions to troubleshoot any of the problems mentioned in 1-4.
[1] A communication error occurs.
[2] Image distortion produced.
[3] Unable to do overseas communication.
[4] Communication speed slow due to FALLBACK.

- Increase the transmission level SOFT SWITCH A4-1, 2, 3, 4, 5. May be used in case [1] [2] [3].
- Decrease the transmission level SOFT SWITCH A4-1, 2, 3, 4, 5. May be used in case [3].
- Apply line equalization SOFT SWITCH A5-1, 2.

May be used in case [1] [2] [3] [4].

- Slow down the transmission speed SOFT SWITCH A2-1, 2, 3, 4. May be used in case [2] [3].
- Replace the TEL/LIU PWB

May be used in all cases.

- Replace the control PWB.

May be used in all cases.

* If transmission problems still exist on the machine, use the following format and check the related matters.



[^1]
## [4] Error code table

1. Communication error code table

G3 Transmission

| Code | Final received signal | Error Condition (Receiver side) |
| :---: | :--- | :--- |
| 0 | Incomplete signal frame | Cannot recognize bit stream after flag |
| 1 | NSF, DIS | Cannot recognize DCS signal by echo etc. <br> Cannot recognize NSS signal (FIF code etc) |
| 2 | CFR | Disconnects line during reception (carrier missing etc) |
| 3 | FTT | Disconnects line by fall back |
| 4 | MCF | Disconnects line during reception of multi page <br> Cannot recognize NSS, DCS signal in the case of mode change |
| 5 | PIP or PIN | The line is hung up without replying to telephone request from the receiving party. |
| 6 | RTN or RTP | Cannot recognize NSS, DCS signal after transmit RTN or RTP signal. |
| 7 | No signal or DCN | No response in receiver side or DCN signal received* (transmitter side) |
| 8 | - | Owing to error in some page the error could not be corrected although the specified number of <br> error retransmissions were attempted. |
| 11 | - | Error occurred after or while reception by the remote (receiving) machine was revealed to be <br> impossible. |
| 12 | - | Error occurred just after fallback. |
| 13 | - | Error occurred after a response to retransmission end command was received. |

## G3 Reception

| Code | Final received signal |  |
| :---: | :--- | :--- |
| 0 | Incomplete signal frame | Cannot recognize bit stream after flag Condition (Receiver side) |
| 1 | NSS, DCS | Cannot recognize CFR or FTT signal <br> Disconnects line during transmission (line error) |
| 2 | NSC, DTC | Cannot recognize NSS signal (FIF code etc) |
| 3 | EOP | Cannot recognize MCF, PIP, PIN, RTN, RTP signal |
| 4 | EOM | Cannot recognize MCF, PIP, PIN, RTN, RTP signal in the case of mode change |
| 5 | MPS | The line is hung up without replying to communication request. |
| 6 | PR1-Q | Cannot recognize PIP, PIN signal in the case of TALK request |
| 7 | No signal or DCN | No response in transmitter (cannot recognize DIS signal) or DCN signal received* (receiver side) |
| 8 | - | Error occurred upon completion of reception of all pages. |
| 9 | - | Error occurred when mode was changed or Transmission/Reception switching was performed. |
| 10 | - | Error occurred during partial page or physical page reception. |
| 11 | - | Error occurred after or during inquiry from the remote (transmitting) machine as to whether <br> reception is possible or not. |
| 12 | - | Error occurred during or just after fallback. |
| 13 |  | - |

## CHAPTER 3. MECHANISM BLOCKS

## [1] General description

## 1. Document feed block and diagram



Fig. 1

## 2. Document feed operation

1) The original, which is set in the document hopper, feeds automatically when the front sensor is activated. This in turn activates the pulse motor which drives the document supply roller. The document stops when the lead edge is detected by the document sensor.
2) The lead edge of the original is fed a specified number of pulses after the lead edge of the document is detected for the reading process to begin.
3) The trailing edge of the original is fed a specific number of pulses after the trailing edge of the document deactivates the document sensor. The read process then stops and the original is discharged.
4) When the front sensor is in the OFF state (any document is not set up in the hopper guide), the drive will be stopped when the document is discharged.

## 3. Hopper mechanism

## 3-1. General view



Fig. 2
The hopper section contains document guides that are used to adjust the hopper to the width of the original document. This ensures that the original feeds straight into the fax machine for scanning.
Document width: 148 mm to 216 mm (A5 longitudinal size to Letter longitudinal size)
NOTE: Adjust the document guide after setting up the document.

## 3-2. Automatic document feed

1) Use of the paper feed roller and separation rubber plate ensures er-ror-free transport and separation of documents. The plate spring presses the document to the paper feed roller to assure smooth feeding of the document.
2) Document separation method: Separation rubber plate


Fig. 3

## 3-3. Documents applicable for automatic feed

|  | $4 \times 6$ series (788mm x 1091mm x 1000mm sheets) |  | Square meter series |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Minimum | Maximum | Minimum | Maximum |
| Feeder capacity | 5 sheets, max. |  |  |  |
| Paper weight | 45 kg | 69.2 kg | $52 \mathrm{~g} / \mathrm{m}^{2}$ | $80 \mathrm{~g} / \mathrm{m}^{2}$ |
| Paper thickness (ref.) | 0.06 mm | 0.09 mm | 0.06 mm | 0.09 mm |
| Paper size | $148 \mathrm{~mm} \times 140 \mathrm{~mm} \sim$ <br> A4 $(210 \mathrm{~mm} \times 297 \mathrm{~mm})$, Letter ( $216 \mathrm{~mm} \times 279 \mathrm{~mm}$ ) |  |  |  |

NOTE: Double-side coated documents and documents on facsimile recording paper should be inserted manually. The document feed quantity may be changed according to the document thickness.

Documents corresponding to a paper weight heavier than $69.2 \mathrm{~kg}(80 \mathrm{~g} /$ $\left.\mathrm{m}^{2}\right)$ and lighter than $135 \mathrm{~kg}\left(157 \mathrm{~g} / \mathrm{m}^{2}\right)$ are acceptable for manual feed.

Documents heavier than 135 kg in terms of the paper weight must be duplicated on a copier to make it operative in the facsimile.

## 3-4. Loading the documents

1) Make sure that the documents are of suitable size and thickness, and free from creases, folds, curls, wet glue, wet ink, clips, staples and pins.
2) Place documents face down in the hopper.
i) Adjust the document guides to the document size.
ii) Align the top edge of documents and gently place them into the hopper. The first page under the stack will be taken up by the feed roller to get ready for transmission.
NOTES: 1) Curled edge of documents, if any, must be straightened out.
3) Do not load the documents of different sizes and/or thicknesses together.


Fig. 4

## 3-5. Documents requiring use of document carrier

1) Documents smaller than $148 \mathrm{~mm} \times 140 \mathrm{~mm}$.
2) Documents thinner than the thickness of 0.06 mm .
3) Documents containing creases, folds, or curls, especially those whose surface is curled (maximum allowable curl is 5 mm ).
4) Documents containing tears.
5) Carbon-backed documents. (Insert a white sheet of paper between the carbon back and the document carrier to avoid transfer of carbon to the carrier.)
6) Documents containing an easily separable writing material (e.g., those written with a lead pencil).
7) Transparent documents.
8) Folded or glued documents.

Document in document carrier should be inserted manually into the feeder.

## 4. Document release

## 4-1. General

To correct a jammed document or to clean the document running surface, pull the insertion side of document center of the operation panel. To open the upper document guide, the operation panel must be opened first.

## 4-2. Cross section view



Fig. 5

## 5. Recording block

## 5-1. General view



Fig. 6

## 5-2. Driving

Via the pulse motor gear shaft, the reduction gear, and the recording paper feed gear, rotation of the pulse motor is conveyed to the recording paper feed roller to feed the recording paper.

## $5-3$. Recording

Use of a thermal head permits easier maintenance and low operating costs.

## 1) Thermal head

The thermal head consists of 1728-dot heat elements arranged in a single row and has the resolution of 8 dots $/ \mathrm{mm}$. The maximum recording speed is $10 \mathrm{~ms} /$ line. The thermal head also incorporates a 1728-dot shift register latch and output control driver circuit. Low power consumption is achieved by dividing the head into nine segments.

## 2) Structure of the recording mechanism

Recording is accomplished by pressing the thermal head on the recording paper against the platen roller.
The main scan (horizontal) is electronically achieved, while the subscan (vertical) is achieved by moving the recording paper by the recording platen roller.
Usually, the cause for uneven print tone is caused by misalignment of the thermal head or uneven contact with the roller.
It can by checked in the following manner.

1) Check if the thermal head power and signal cables are properly routed.
2) Check that the thermal head pivot moves smoothly up and down.
3) Check that the thermal head support bracket is secured without any play.
4) Check to see that the recording platen roller has proper concentricity, in the case of a print tone variation evenly repeated down the page.
5) Replace the thermal head with a new one and check to see if the same trouble occurs.

## [2] Disassembly and assembly procedures

- This chapter mainly describes the disassembly procedures. For the assembly procedures, reverse the disassembly procedures.
- Easy and simple disassembly/assembly procedures of some parts and units are omitted. For disassembly and assembly of such parts and units, refer to the Parts List.
- The numbers in the illustration, the parts list and the flowchart in a same section are common to each other.
- To assure reliability of the product, the disassembly and the assembly procedures should be performed carefully and deliberately.

| 1 | Paper support guide, handset cover and scanner unit | Parts list (Fig. 1) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. | Part name | Q'ty | No. | Part name | Q'ty |
|  |  | 1 | Mechanism unit | 1 | 7 | Screw (3x8) | 1 |
|  |  | 2 | Screw (3x12) | 2 | 8 | Handset cover | 1 |
|  |  | 3 | Paper support guide | 1 | 9 | Hook switch lever | 1 |
|  |  | 4 | Paper sensor lever | 1 | 10 | Screw (3×12) | 2 |
|  |  | 5 | Paper sensor lever spring | 1 | 11 | Connector | 2 |
|  |  | 6 | Panel stopper | 1 | 12 | Scanner unit | 1 |



Fig. 1


Fig. 2

| No. | Part name | Q'ty | No. | Part name | Q'ty |
| :---: | :--- | :---: | :---: | :--- | :---: |
| 1 | Mechanism unit | 1 | 10 | Hopper guide unit | 1 |
| 2 | Connector | 2 | 11 | Operation panel unit/ <br> document guide upper unit | 1 |
| 3 | Operation panel unit | 1 |  | 1 |  |
| 4 | Connector | 3 | 12 | Screw | 1 |
| 5 | Screw $(3 \times 12)$ | 2 | 13 | Pinion gear | 1 |
| 6 | Cutter cam spring | 1 | 14 | Hopper spring | 1 |
| 7 | Drive unit | 1 | 15 | Hopper guide, left | 1 |
| 8 | Cutter arm | 1 | 16 | Hopper guide, right | 1 |
| 9 | Screw $(3 \times 8)$ | 2 | 17 | Hopper guide | 1 |



Fig. 3


Fig. 4

Parts list (Fig. 5)

| No. | Part name | Q'ty | No. | Part name | Q'ty | No. | Part name | Q'ty |
| :---: | :--- | :---: | :---: | :--- | :---: | :--- | :--- | :---: |
| 1 | Cutter switch | 1 | 11 | Idler gear, $25 Z$ | 1 | 21 | Planet gear | 1 |
| 2 | Cutter gear | 1 | 12 | Planet lever C | 1 | 22 | Planet gear spring | 1 |
| 3 | Cutter gear spring | 1 | 13 | Planet gear | 1 | 23 | Planet lever B | 1 |
| 4 | Cutter plate | 1 | 14 | Planet gear spring | 1 | 24 | Planet gear | 1 |
| 5 | Cam spring | 1 | 15 | Reduction gear, $17 / 36 Z$ | 1 | 25 | Planet gear spring | 1 |
| 6 | Cam switch | 1 | 16 | Mode lever | 1 | 26 | Reduction gear, $17 / 43 Z$ | 1 |
| 7 | Cam gear | 1 | 17 | Planet gear | 1 | 27 | Idler gear, $25 Z$ | 1 |
| 8 | Reduction gear, $17 / 30 Z$ | 1 | 18 | Planet gear spring | 1 | 28 | Screw (3×8) | 1 |
| 9 | Idler gear, 30Z | 1 | 19 | Reduction gear, $17 / 30 Z$ | 1 | 29 | Motor | 1 |
| 10 | Idler gear, $25 Z$ | 1 | 20 | Planet lever A | 1 | 30 | Motor plate | 1 |
|  |  |  |  |  |  |  |  |  |



Fig. 5

Head guide, PO guide, cutter guide upper and cutter

Parts list (Fig. 6)

| No. | Part name | Q'ty | No. | Part name | Q'ty |
| :---: | :--- | :---: | :---: | :--- | :---: |
| 1 | Mechanism unit | 1 | 5 | Pinch roller | 2 |
| 2 | Cutter guide upper | 1 | 6 | PO guide | 1 |
| 3 | PO guide unit | 1 | 7 | Head guide | 1 |
| 4 | Pinch roller spring | 2 | 8 | Screw $(3 \times 6)$ | 1 |
|  |  | 9 | Cutter | 1 |  |
|  |  |  |  |  |  |

Fig. 6

| 7 | PO roller guide and head frame unit | Parts list (Fig. 7) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. | Part name | Q'ty | No. | Part name | Q'ty |
|  |  | 1 | Mechanism unit | 1 | 7 | PO roller rubber | 2 |
|  |  | 2 | Screw ( $3 \times 6$ ) | 1 | 8 | PO roller | 1 |
|  |  | 3 | Connector | 1 | 9 | PO roller guide | 1 |
|  |  | 4 | Screw (3x12) | 1 | 10 | Screw (3x12) | 1 |
|  |  | 5 | PO roller guide unit | 1 | 11 | Head frame unit | 1 |
|  |  | 6 | PO gear | 1 | 12 | Screw ( $3 \times 8$ ) | 2 |
|  |  |  |  |  | 13 | Panel lock lever spring | 2 |



Fig. 7

| 8 | Head frame and thermal head | Parts list (Fig. 8) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | No. | Part name | Q'ty | No. | Part name | Q'ty |
|  |  | 1 | Platen gear | 1 | 9 | Screw ( $3 \times 6$ ) | 1 |
|  |  | 2 | Platen bearing | 2 | 10 | Head holder, right | 1 |
|  |  | 3 | Platen roller | 1 | 11 | Thermal head | 1 |
|  |  | 4 | Connector | 1 | 12 | Document sensor lever | 1 |
|  |  | 5 | Screw ( $3 \times 6$ ) | 1 | 13 | Document sensor lever | 1 |
|  |  | 6 | Head earth cable | 1 |  | spring |  |
|  |  | 7 | Screw ( $3 \times 6$ ) | 1 | 14 | Head spring 2 | 2 |
|  |  | 8 | Head holder, left | 1 | 15 | Head spring 1 | 3 |
|  |  |  |  |  | 16 | Head frame | 1 |


| 1 |
| :--- |
| $(2)$ |
| $(3)$ |


| $(4)$ | $(12)$ |
| :--- | :--- |
| 5 | 113 |
| 6 | 14 |
| 7 | 14 |
| 1 | 15 |
| 8 | 16 |
| 9 |  |
| 10 |  |
| 10 |  |
| 110 |  |



Fig. 8

PWB case top, bottom, PWB and speaker

Parts list (Fig. 9)

| No. | Part name | Q'ty | No. | Part name | Q'ty |
| :---: | :--- | :---: | :---: | :--- | :---: |
| 1 | Mechanism unit | 1 | 11 | Screw $(3 \times 8)$ | 2 |
| 2 | Screw (3×8) | 1 | 12 | Hook switch joint lever | 1 |
| 3 | Connector | 1 | 13 | PWB case, top | 1 |
| 4 | Connector | 2 | 14 | PWB case, bottom unit | 1 |
| 5 | PWB case unit | 1 | 15 | Screw $(3 \times 6)$ | 1 |
| 6 | Screw $(3 \times 8)$ | 1 | 16 | TEL/LIU PWB unit | 1 |
| 7 | Control PWB unit | 1 | 17 | Screw (4×6) | 1 |
| 8 | Screw (3×8) | 1 | 18 | AC cord ass'y | 1 |
| 9 | Speaker holder lever spring | 1 | 19 | Power supply PWB unit | 1 |
| 10 | Speaker ass'y | 1 | 20 | PWB case, bottom | 1 |



Fig. 9


Fig. 10

## CHAPTER 4. DIAGRAMS

[1] Block diagram

$i$
-2


CONTROL
PWB UNIT
PWB UNIT


PANEL PWB UNIT
[3] Point- to-point diagram


## CHAPTER 5. CIRCUIT DESCRIPTION

## [1] Circuit description

## 1. General description

The compact design of the control PWB is obtained by using CONEXANT fax engine in the main control section and high density printing of surface mounting parts. Each PWB is independent according to its function as shown in Fig. 1.

## 2. PWB configuration



Fig. 1

## 1) Control PWB

The control PWB controls peripheral PWBs, mechanical parts, transmission, and performs overall control of the unit.
This machine employs a 1 chip modem (FM209) which is installed on the control PWB.

## 2) TEL/LIU PWB

This PWB controls connection of the telephone line to the unit.

## 3) Power supply PWB

This PWB provides voltages of +5 V and +24 V to the other PWBs.

## 4) Panel PWB

The panel PWB allows input of the operation keys.

## 5) LCD PWB

This PWB controls the LCD display.

## 3. Operational description

Operational descriptions are given below:

- Transmission operation

When a document is loaded in standby mode, the state of the document sensor is sensed via the 1 chip fax engine (FC200). If the sensor signal was on, the motor is started to bring the document into the standby position. With depression of the START key in the off-hook state, transmission takes place.
Then, the procedure is sent out from the modem and the motor is rotated to move the document down to the scan line. In the scan processor, the signal scanned by the CIS is sent to the internal image processor and the AD converter to convert the analog signal into binary data. This binary data is transferred from the scan processor to the image buffer within the RAM and encoded and stored in the transmit buffer of the RAM. The data is then converted from parallel to serial form by the modem where the serial data is modulated and sent onto the line.

- Receive operation

There are two ways of starting reception, manual and automatic. Depression of the START key in the off-hook mode in the case of manual receive mode, or CI signal detection by the LIU in the automatic receive mode.
First, the FC200 controls the procedure signals from the modem to be ready to receive data. When the program goes into phase C , the serial data from the modem is converted to parallel form in the modem interface of the 1 chip fax engine (FC200) which is stored in the receive buffer of the RAM. The data in the receive buffer is decoded software-wise to reproduce it as binary image data in the image buffer. The data is DMA transferred to the recording processor within the FC200 which is then converted from parallel to serial form to be sent to the thermal head. The data is printed line by line by the FC200 which is assigned to control the motor rotation and strobe signal.

- Copy operation

To make a copy on this facsimile, the COPY key is pressed when the machine is in stand-by with a document on the document table and the telephone set is in the on-hook state.
First, depression of the COPY key advances the document to the scan line. Similar to the transmitting operation, the image signal from the CIS is converted to a binary signal in the DMA mode via the 1 chip fax engine (FC200) which is then sent to the image buffer of the RAM. Next, the data is transferred to the recording processor in the DMA mode to send the image data to the thermal head which is printed line by line. The copying takes place as the operation is repeated.

## [2] Circuit description of control PWB

## 1. General description

Fig. 2 shows the functional blocks of the control PWB, which is composed of 4 blocks.

## MAIN CONTROL BLOCK



Fig. 2 Control PWB functional block diagram

## 2. Description of each block

## (1) Main control block

The main control block is composed of CONEXANT 1 chip fax engine (FC200), ROM (1Mbit), SRAM (256kbit) and Modem (FM209). Devices are connected to the bus to control the whole unit.

1) FC200 (IC2) : pin-144 QFP (FAX ENGINE)

## 2) FM209 (IC4) : pin-128 QFP (MODEM)

The FAX ENGINE Integrated Facsimile Controllers.
FC200, contains an internal 8 bit microprocessor with an external 16 Mbyte address space and dedicated circuitry optimized for facsimile image processing and facsimile machine control and monitoring.

## 3) 27E010 (IC5): pin-32 DIP (ROM)

ROM of 1 Mbit equipped with software for the main CPU.

## 4) W24258S-70LE (IC3): pin-28 SOP (SRAM)

Line memory for the main CPU system RAM area and coding/decoding process. Used as the transmission buffer.
Memory of recorded data such as daily report and auto dials. When the power is turned off, this memory is backed up by the lithium battery.


FC200 (IC2) Terminal descriptions

| Pin Name | Pin No. | I/O | Input <br> Type | Output Type | Pin Description (Note: Active low signals have an " n " pin name ending.) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CPU Control Interface |  |  |  |  |  |
| MIRQn | 135 | I | HU | - | Modem interrupt, active low. (Hysteresis In, Internal Pullup.) |
| SYSCLK | 133 | I | H | - | System clock. (Hysteresis In.) |
| TSTCLK | 130 | 0 | - | 123XT | Test clock. |
| Bus Control Interface |  |  |  |  |  |
| $\begin{array}{\|l\|} \hline A[23: 0] \\ 15: 20][22: 27] \\ \hline \end{array}$ | [1:6][8:13] | 0 | TU | 123XT | Address bus (24-bit). |
| $\begin{gathered} \hline \mathrm{D}[7: 0] \\ 141: 144] \\ \hline \end{gathered}$ | [136:139] | 1/O | TU | 123XT | Data bus (8-bit). |
| RDn | 128 | 0 | - | 123XT | Read strobe. |
| WRn | 127 | 0 | - | 123XT | Write strobe. |
| ROMCSn | 120 | 0 | - | 123XT | ROM chip select. |
| CS1n | 122 | 0 | - | 123XT | I/O chip select. |
| CSOn | 57 | 0 | - | 123XT | SRAM chip select. (Battery powered.) |
| MCSn | 121 | 0 | - | 123XT | Modem chip select. |
| SYNC | 126 | 0 | - | 123XT | Indicates CPU op code fetch cycle (active high). |
| REGDMA | 124 | 0 | - | 123XT | Indicates REGSEL cycle and DMA cycle. |
| WAITn | 125 | 0 | - | 123XT | Indicates current TSTCLK cycle is a wait state or a halt state. |
| RASn | 113 | 0 | - | 123XT | DRAM row address select. (Battery powered.) |
| CAS[1:0]n | [111:112] | 0 | - | 123XT | DRAM column address select. (Battery powered.) |
| DWRn | 109 | 0 | - | 123XT | DRAM write. (Battery powered.) |
| Prime Power Reset Logic and Test |  |  |  |  |  |
| DEBUGn | 129 | I | HU | - | External non-maskable input (NMI). |
| RESETn | 131 | I/O | HU | 2XO | FC100/FC200 Reset. |
| TEST | 58 | I | C | - | Sets Test mode (Battery powered). |
| Battery Power Control and Reset Logic |  |  |  |  |  |
| XIN | 59 | 1 | OSC | - | Crystal oscillator input pin. |
| XOUT | 60 | 0 | - | OSC | Crystal oscillator output pin. |
| PWRDWNn | 62 | I | H | - | Used by external system to indicate -to FC200-loss of prime power. (Results in NMI) |
| BATRSTn | 61 | I | H | - | Battery power reset input. |
| WRPROTn | 110 | 0 | - | 1XC | (Battery powered.) Write protect during loss of VDD power. NOTE:The functional logic is powered by battery power, but the output drive is powered by DRAM battery power. |
| Scanner Interface |  |  |  |  |  |
| START | 101 | 0 | - | 2XS | Scanner shift gate control. |
| CLK1 | 100 | 0 | - | 2XS | Scanner clock. |
| CLK1n | 99 | 0 | - | 2XS | Scanner clock-inverted. |
| CLK2 | 98 | 0 | - | 2XS | Scanner reset gate control (or clock for CIS scanner). |
| FCS1n/VIDCTL0 | 96 | 0 | - | 2XT | Flash memory chip select or Video Control signal. |
| FCS2n/VIDCTL1 | 97 | 0 | - | 2XT | Flash memory chip select or Video Control signal. |
| Printer Interface |  |  |  |  |  |
| PCLK/DMAACK | 29 | 0 | - | 3XC | Thermal Print Head (TPH) clock, or external DMAACK. |
| PDAT | 30 | 0 | - | 2XP | Serial printing data (to TPH). |
| PLAT | 31 | 0 | - | 3XP | TPH data latch. |
| STRB[3:0] | [33:36] | 0 | - | 1XP | Strobe signals for the TPH. |
| STRBPOL/DMAREQ | 37 | 1 | C | - | Sets strobe polarity, active high/low or external DMA request. |
| Operator Panel Interface |  |  |  |  |  |
| OPO[0]/GPO[8]/ SMPWRCTRL | 47 | 0 | - | 2XL | Keyboard/LED strobe [0] or GPO[8] or Scan Motor Power Control |
| OPO[1]/GPO[9]/ PMPWRCTRL | 46 | 0 | - | 2XL | Keyboard/LED strobe [1] or GPO[9] or Print Motor Power Control |
| $\begin{aligned} & \text { OPO[2]/GPO[10]/ } \\ & \text { RINGER } \end{aligned}$ | 44 | 0 | - | 2XCT | Keyboard/LED strobe [2] or GPO[10] or RINGER |
| OPO[3]/GPO[11] | 43 | 0 | - | 2XL | Keyboard/LED strobe [3] or GPO[11] |
| $\begin{aligned} & \text { OPO[4]/GPO[12]/ } \\ & \text { SSTXD1 } \end{aligned}$ | 42 | 0 | - | 2XL | Keyboard/LED strobe [4] or GPO[12] or SSTXD1 (for SSIF1) |
| OPO[5]/GPO[13] | 40 | 0 | - | 2XL | Keyboard/LED strobe [5] or GPO[13] |
| OPO[6]/GPO[14] | 39 | 0 | - | 2XL | Keyboard/LED strobe [6] or GPO[14] |
| OPO[7]/GPO[15] | 38 | 0 | - | 2XL | Keyboard/LED strobe [7] or GPO[15] |
| $\begin{aligned} & \text { OPI[0]/GPIO[21]/ } \\ & \text { SSRXD1 } \end{aligned}$ | 52 | I/O | HU | 2XC | (Pullup, Hysteresis In) Keyboard return [0] or GPIO[21] or SSRXD1 (for SSIF1) |
| $\begin{aligned} & \hline \text { OPI[1]/GPIO[22]/ } \\ & \text { SSSTAT1 } \\ & \hline \end{aligned}$ | 51 | I/O | HU | 2XC | (Pullup, Hysteresis In) Keyboard return [1] or GPIO[22] or SSSTAT1 (for SSIF1) |

## FC200 (IC2) Terminal descriptions

| Pin Name | Pin No. | I/O | Input <br> Type | Output <br> Type | Pin Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Operator Panel Interface |  |  |  |  |  |
| $\begin{aligned} & \text { OPI[2]/GPIO[23]/ } \\ & \text { SSCLK1 } \end{aligned}$ | 50 | I/O | HU | 2XC | (Pullup, Hysteresis In) Keyboard return [2] or GPIO[23] or SSCLK1 (for SSIF1) |
| OPI[3]/GPIO[24] | 49 | I/O | HU | 2XC | (Pullup, Hysteresis In) Keyboard return [3] or GPIO[24] |
| LEDCTL | 55 | 0 | - | 4XC | Indicates outputs OPO[7:0] are for LEDs. |
| LCDCS | 54 | 0 | - | 1XC | LCD chip select. |
| General Purpose I/O |  |  |  |  |  |
| GPIO[0] | 94 | I/O | H | 2XC | (Hysteresis In) GPIO[0]. |
| GPIO[1]/SASTXD | 93 | I/O | H | 2XC | (Hysteresis In) GPIO[1] or SASTXD (for SERIF). |
| GPIO[2]/SASRXD | 92 | I/O | H | 2XC | (Hysteresis In) GPIO[2] or SASRXD (for SERIF). |
| GPIO[3]/SASCLK | 91 | I/O | H | 2XC | (Hysteresis In) GPIO[3] or SASCLK (for SERIF). |
| GPIO[4]/CPCIN | 90 | I/O | H | 2XC | (Hysteresis In) GPIO[4] or Calling Party Control Input. |
| GPIO[5]/SSCLK2 | 89 | I/O | H | 2XC | (Hysteresis In) GPIO[5] or SSCLK2 (for SSIF2). |
| GPIO[6]/SSTXD2 | 87 | I/O | H | 2XC | (Hysteresis In) GPIO[6] or SSTXD2 (for SSIF2). |
| GPIO[7]/SSRXD2 | 86 | I/O | H | 2XC | (Hysteresis In) GPIO[7] or SSRXD2 (for SSIF2). |
| GPIO[8]/FWRn | 85 | I/O | H | 2XC | (Hysteresis In) GPIO[8] or flash write enable signal for NAND-type flash memory. |
| GPIO[9]/FRDn | 84 | I/O | H | 2XC | (Hysteresis In) GPIO[9] or flash read enable signal for NAND-type flash memory. |
| GPIO[10]/SSSTAT2 | 83 | I/O | H | 2XC | (Hysteresis In) GPIO[10] or SSSTAT2 (for SSIF2). |
| GPIO[11]/BE/ SERINP | 82 | I/O | H | 1XC | (Hysteresis In) GPIO[11] or bus enable or serial port data input for autobaud detection. |
| GPIO[12]/CS[2]n | 80 | I/O | H | 2XC | (Hysteresis In) GPIO[12] or I/O chip select [2]. |
| GPIO[13]/CS[3]n | 79 | I/O | H | 2XC | (Hysteresis In) GPIO[13] or I/O chip select [3]. |
| GPIO[14]/CS[4]n | 78 | I/O | H | 2XC | (Hysteresis In) GPIO[14] or I/O chip select [4]. |
| GPIO[15]/CS[5]n | 77 | I/O | H | 2XC | (Hysteresis In) GPIO[15] or I/O chip select [5]. |
| GPIO[16]/IRQ[8] | 76 | I/O | H | 1XC | (Hysteresis In) GPIO[16] or external interrupt 8. |
| GPIO[17] | 75 | I/O | H | 1XC | (Hysteresis In) GPIO[17]. |
| GPIO[18]/IRQ[9]n | 74 | I/O | H | 1XC | (Hysteresis In) GPIO[18] or external interrupt 9. |
| GPIO[19]/RDY/ SEROUT | 73 | I/O | H | 1XC | (Hysteresis In) GPIO[19] or ready signal or Serial port data output for autobaud detection. |
| GPIO[20]/ALTTONE | 107 | I/O | H | 1XC | (Hysteresis In) GPIO[20] or ALTTONE. |
| Miscellaneous |  |  |  |  |  |
| SM[3:0]/GPO[7:4] | [103:106] | 0 | - | 1XC | Programmable: scan motor control pins or GPO pins. |
| PM[3:0]/GPO[3:0] | [115:118] | 0 | - | 1XC | Programmable: print motor control pins or GPO pins. |
| TONE | 119 | O | - | 1XC | Tone output signal. |
| Power, Reference Voltages, Ground |  |  |  |  |  |
| -Vref/CLREF | 66 | I | -VR | - | Negative Reference Voltage for Video A/D or Reference Voltage for the Clamp Circuit. |
| ADXG | 68 | I | VXG | - | A/D Internal GND. (NOTE: This pin requires an external $0.22 \mu \mathrm{~F}$ decoupling capacitor to ADGA.) |
| ADGA | 69 |  | VADG |  | A/D Analog Ground |
| ADVA | 70 |  | VADV |  | A/D Analog Power |
| ADGD | 72 |  | VADG |  | A/D Digital Ground |
| +Vref | 71 | I | +VR |  | Positive Reference Voltage for Video A/D. |
| VIN | 67 | I | VA | - | Analog Video A/D input. |
| THAD1 | 65 | 1 | TA | - | Analog Thermal A/D input. |
| Power and Ground |  |  |  |  |  |
| VSS(12) | $\begin{aligned} & 7,21,28,45, \\ & 53,56,64,88, \\ & 95,108,132, \\ & 134 \end{aligned}$ |  |  |  | Digital Ground |
| VDD(8) | $\begin{aligned} & 14,32,41,48, \\ & 81,102,123, \\ & 140 \end{aligned}$ |  |  |  | Digital Power |
| VBAT | 63 |  |  |  | Battery Power |
| VDRAM | 114 |  |  |  | DRAM Battery Power |

## (2) Panel control block

The following controls are performed by the FC200.

- Operation panel key scanning
- Operation panel LCD display
(3) Mechanism/recording control block
- Recording control block diagram (1)


Fig. 4

## UX-66U

## (4) Modem (FM209) block

## INTRODUCTION

The CONEXANT FM209 MONOFAX modem is a synchronous 9600 bits per second (bps) half-duplex modem with error detection and DTMF reception. It has low power consumption and requires a single +5 V and +3.3 V DC power supply. The modem is housed in a single VLSI device package.
The modem can operate over the public switched telephone network (PSTN) through line terminations provided by a data access arrangement (DAA).
The FM209 is designed for use in Group 3 facsimile machines.
The modem satisfies the requirements specified in CCITT recommendations V.29, V. 27 ter, V. 21 Channel 2 and T.4, and meets the binary signaling requirements of T.30.
The modem can operate at $9600,7200,4800,2400$, or 300 bps , and also includes the V. 27 ter short training sequence option.
The modem can also perform HDLC framing according to T. 30 at 9600, $7200,4800,2400$, or 300 bps .
The modem features a programmable DTMF receiver and three programmable tone detectors which operate concurrently with the V. 21 channel 2 receiver.
The voice mode allows the host computer to efficiently transmit and receive audio signals and messages.
The modem is available in either a 128-pin plastic quad flat pack (TQFP).
General purpose input/output (GPIO) pins are available for host as signment in the 128-pin TQFP.
The modem's small size, single voltage supply, and low power consumption allow the design of compact system enclosures for use in both office and home environments.
MONOFAX is a registered trademark of CONEXANT.


Fig. 5

## FEATURES

- Group 3 facsimile transmission/reception
- ITU-T V.29, V. 27 ter, T.30, V. 21 Channel 2, T. 4
- ITU-T V. 17 and V. 27 ter short train
- HDLC framing at all speeds
- Receive dynamic range: 0 dBm to -43 dBm
- Automatic adaptive equalization
- Fixed and programmable digital compromise equalization
- DTMF detect and tone detect
- ITU-T V. 21 Channel 2 FSK 7E Flag Detect
- Ring detector
- Programmable transmits level
- Programmable single/dual tone transmission
- V. 23 and Type I Caller ID
- Full-duplex modes:
$T X=75 \mathrm{bps} . \mathrm{RX}=1200 \mathrm{bps}$
$T X=1200 \mathrm{bps} . \mathrm{RX}=75 \mathrm{bps}$
- Half-duplex mode:
$T X=R X=1200 \mathrm{bps}$
- Serial and parallel data modes
- Programmable parallel data mode
- $5,6,7$ or 8 data bits
- 1 or 2 Stop bits
- Mark, Space, Even, or Odd Parity
- Break function
- Transmitter squelch
- Compromise equalizer
- Programmable interface memory interrupt
- Eight General Purpose Input (GPI) and eight General Purpose Output (GPO) pins for host assignment
- DTE interface: two alternate ports
- $\quad$ Selectable microprocessor bus (6500 or 8085)
- ITU-T V. 24 (EIA/TIA-232-E compatible) interface
- TTL and CMOS compatible
- $3.3 \mathrm{~V} / 5 \mathrm{~V}$ operation
- Power consumption
- Operating Mode: 200 mW (Basic), 275 mW (-V option). 300 mW (-VS option)
- Sleep Mode: 1 ma (Basic. -V option and -VS option)
- Packaging
- 128-pin TQFP (thin quad flat pack)

FM209 (IC4) Hardware Interface Signals
Pin Signals - 128-Pin TQFP

| Pin No. | Signal Name | I/O Type | Pin Description |
| :---: | :---: | :---: | :---: |
| 1 | SR4IN/RESERVED | MI | Modem Interconnect |
| 2 | SR3OUT/RESERVED | MI | Modem Interconnect |
| 3 | EYESYNC | OA | Eye Pattern Circuit |
| 4 | EYECLK | OA | Eye Pattern Circuit |
| 5 | RXD | OA | DTE serial interface |
| 6 | SR1IO | MI | Modem Interconnect |
| 7 | NC | - | No Connection |
| 8 | EYEXY | OA | Eye Pattern Circuit |
| 9 | SR4OUT | MI | Modem Interconnect |
| 10 | VDD1 | PWR | 3.3V Digital Supply for DSP |
| 11 | RLSD\# | OB | DTE Serial Interface |
| 12 | DCLK | OB | DTE Serial Interface |
| 13 | EN85\# | IA | Host Parallel Interface |
| 14 | GPI0 | IA | Host Parallel Interface |
| 15 | RTS\# | IA | DTE Serial Interface |
| 16 | DGND1 | GND | DSP Digital Ground |
| 17 | TXD | IA | DTE Serial Interface |
| 18 | SA1CLK | MI | Modem Interconnect |
| 19 | RS4 | IB | Host Parallel Interface |
| 20 | RS3 | IB | Host Parallel Interface |
| 21 | RS2 | IB | Host Parallel Interface |
| 22 | RS1 | IB | Host Parallel Interface |
| 23 | RS0 | IB | Host Parallel Interface |
| 24 | YCLK | I | Modem Interconnect |
| 25 | IACLK | MI | Modem Interconnect |
| 26 | IA1CLK | MI | Modem Interconnect |
| 27 | CTRLSIN_S/NC | MI | Modem Interconnect |
| 28 | RESERVED/NC | MI | Modem Interconnect |
| 29 | SOUT_S/NC | MI | Modem Interconnect |
| 30 | SIN_S/NC | MI | Modem Interconnect |
| 31 | FSYNC_S/NC | MI | Modem Interconnect |
| 32 | IARESET_S\#/NC | MI | Modem Interconnect |
| 33 | AGND1 | GND | IA Analog Ground |
| 34 | LINEIN_S/NC | I | Line Interface |
| 35 | MICP_S/NC | I | Microphone Input |
| 36 | MICM_S/NC | 1 | Microphone Input |
| 37 | MICBIAS_S/NC | O | Microphone Bias Output |
| 38 | NC | - | No Connection |
| 39 | NC | - | No Connection |
| 40 | VREF_S/NC | MI | Modem Interconnect |
| 41 | VC_S/NC | MI | Modem Interconnect |
| 42 | VAA_S/NC | PWR | 5V IA Analog power |
| 43 | LINEOUT_S/NC | O | Line Interface |
| 44 | NC | - | No Connection |
| 45 | AGND2 | GND | IA Analog Ground |
| 46 | SPKRP_S/NC | O | Speaker Interface Output |
| 47 | SPKRM_S/NC | 0 | Speaker Interface Output |
| 48 | AVDD_S/NC | PWR | 5V IA Digital power |
| 49 | RESERVED/NC | MI | Modem Interconnect |
| 50 | ICLK_S/NC | MI | Modem Interconnect |
| 51 | MCLK_P | MI | Modem Interconnect |
| 52 | CTRLSIN_P | MI | Modem Interconnect |
| 53 | RESERVED | MI | Modem Interconnect |
| 54 | SOUT_P | MI | Modem Interconnect |
| 55 | SIN_P | MI | Modem Interconnect |
| 56 | FSYNC_P | MI | Modem Interconnect |
| 57 | IARESET_P\# | MI | Modem Interconnect |
| 58 | AGND3 | GND | IA Analog Ground |
| 59 | NC | - | No Connection |
| 60 | LINEIN_P | I | Line Interface |
| 61 | MICP_P | I | Microphone Input |
| 62 | MICM_P | I | Microphone Input |
| 63 | MICBIAS_P | O | Microphone Bias Output |
| 64 | NC | - | No Connection |
| 65 | NC | NC | No Connection |
| 66 | VREF_P | MI | Modem Interconnect |
| 67 | VC_P | MI | Modem Interconnect |
| 68 | VAA_P | PWR | 5V Analog Supply for IA |
| 69 | LINEOUT_P | O | Line Interface |
| 70 | AGND4 | GND | IA Analog Ground |
| 71 | SPKRP_P | O | Speaker Interface Output |

## FM209 (IC4) Hardware Interface Signals

Pin Signals - 128-Pin TQFP

| Pin No. | Signal Name | I/O Type | Pin Description |
| :---: | :---: | :---: | :---: |
| 72 | SPKRM_P | 0 | Speaker Interface Output |
| 73 | AVDD_P | PWR | 5 V Digital power for IA |
| 74 | NC | - | No Connection |
| 75 | ICLK_P | MI | Modem Interconnect |
| 76 | MCLK_S/NC | MI | Modem Interconnect |
| 77 | VDD2 | PWR | 3.3V Digital Supply for DSP |
| 78 | D7 | IB/OC | Host Parallel Interface |
| 79 | D6 | IB/OC | Host Parallel Interface |
| 80 | D5 | IB/OC | Host Parallel Interface |
| 81 | D4 | IB/OC | Host Parallel Interface |
| 82 | D3 | IB/OC | Host Parallel Interface |
| 83 | D2 | IB/OC | Host Parallel Interface |
| 84 | DGND2 | GND | DSP Digital Ground |
| 85 | VDD3 | PWR | 3.3V Digital Supply for DSP |
| 86 | D1 | IB/OC | Host Parallel Interface |
| 87 | DGND3 | GND | DSP Digital Ground |
| 88 | D0 | IB/OC | Host Parallel Interface |
| 89 | CSBR\# | IB | Host Parallel Interface |
| 90 | WRITE\# | IB | Host Parallel Interface |
| 91 | CS\# | IB | Host Parallel Interface |
| 92 | READ\# | IB | Host Parallel Interface |
| 93 | GPI2 | IA | General purpose input |
| 94 | GPI3 | IA | General purpose input |
| 95 | GPI4 | IA | General purpose input |
| 96 | GPI5 | IA | General purpose input |
| 97 | GPI6 | IA | General purpose input |
| 98 | GPI7 | IA | General purpose input |
| 99 | GPO7 | OC | General purpose output |
| 100 | VDD4 | PWR | 3.3V DSP Digital Power |
| 101 | GPO6 | OC | General purpose output |
| 102 | GPO5 | OC | General purpose output |
| 103 | RESERVED | MI | Modem Interconnect |
| 104 | GPO4 | OC | General purpose output |
| 105 | GPO3 | OC | General purpose output |
| 106 | DGND4 | GND | DSP Digital Ground |
| 107 | CTS\# | OB | DTE Serial Interface |
| 108 | IRQ1\# | OB | Interrupt request |
| 109 | GPO2 | OC | General purpose output |
| 110 | GPO1 | OC | General purpose output |
| 111 | GPOO | OC | GPO0 (IA reset) |
| 112 | VDD5 | PWR | 3.3V DSP Digital Power |
| 113 | VGG | PWR | 5V DSP Digital |
| 114 | DGND5 | GND | DSP Digital Ground |
| 115 | RESET\# | IB | External reset |
| 116 | XTALI | 1 | Crystal in |
| 117 | XTALO | 0 | Crystal out |
| 118 | RESERVED | MI | Modem Interconnect |
| 119 | XCLK | OB | X clock output |
| 120 | GPI1 | IA | General purpose input |
| 121 | IRQ2\# | OA | Interrupt request |
| 122 | SR3IN | MI | Modem Interconnect |
| 123 | RESERVED | MI | Modem Interconnect |
| 124 | RESERVED | MI | Modem Interconnect |
| 125 | DGND6 | GND | DSP Digital Ground |
| 126 | DVAA | PWR | 3.3V DSP analog power |
| 127 | AGND5 | GND | DSP Analog Ground |
| 128 | RESERVED | MI | Modem Interconnect |

## Notes:

I/O types: $\mathrm{MI}=$ Modem interconnect.
IA, IB, = digital input
$\mathrm{OA}, \mathrm{OB}, \mathrm{OC}=$ digital output
$\mathrm{I}=$ analog input
$\mathrm{O}=$ analog output
P Signals: Primary IA
S Signals: Secondary IA
Reserved = No external connection allowed.

## [3] Circuit description of TEL/LIU PWB

## (1) TEL/LIU block operational description

1) Block diagram


Fig. 6

## 2) Circuit description

The TEL/LIU PWB is composed of the following 7 blocks.

1. Speech circuit section
2. Dial transmission section
3. Speaker amplifier section
4. Ringer circuit section
5. Externally connected TEL OFF HOOK detection circuit
6. Cl detection circuit
7. Signal/DTMF transmission level

## 3) Block description

## 1. Speech circuit section

- The receiver volume is an electronic volume type, this model is switched in 2 steps.

2. Dial transmission section

- D.P. transmission: The CML relay is turned on and off for control in the DP calling system. (Refer to the attached sheet.)
- DTMF transmission: It is formed in the modem, and is output.

3. Speaker amplifier section

- Ringer volume : It is controlled by the combination of the attenuator value of the LINE DRIVER in the modem and the ringer sending level sent from the modem.
- Speaker volume: It is controlled by the attenuator value of the LINE DRIVER in the modem.


## 4. Ringer circuit section

- The ringer sound is formed in the tone of modem when Cl signal is detected. The amplifier circuit drives the speaker of the main body.


## 5. Externally connected TEL OFF HOOK detection circuit section

- The circuit current detection is turned on together with OFF HOOK of main body or OFF HOOK of externally connected TEL. ON of CML OFF ( $\overline{\mathrm{HS}}=\mathrm{L}$ ) is judged as OFF HOOK of externally connected TEL.


## 6. Cl detection circuit

- Cl is detected by the photocoupler which is integrated in series in the primary side TEL circuit well proven in the existing unit.


## 7. Signal/DTMF transmission level

- Signal transmission level setting: ATT -10 dB Circuit output: -12 dBm .
- DTMF transmission level setting: HF -3.5 dBm LF -5.0 dBm Thus, set the level.


## 4) Signal selection

The following signals are used to control the transmission line of TEL/ FAX signal. For details, refer to the signal selector matrix table.
[Control signals from output port]

| Signal Name | Description |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| CML <br> (The circuit is located in the TEL/LIU PWB.) | Line connecting relay and DP generating relay <br> H: Line make <br> L: Line break |  |  |  |
| SP MUTE <br> (The circuit is located in the TEL/LIU PWB.) | Speaker tone mute control signal <br> H: Muting (Power down mode) <br> L: Muting cancel (Normal operation) |  |  |  |
| TEL MUTE | Handset reception mute control signal <br> H: Muting <br> L: Muting cancel |  |  |  |
| RCVOL(The circuit is loin the control P | Handset receiver volume control signal |  |  |  |
|  | Volume | High | Low | DTMF sending and LOW |
|  | RCVOL | L | H | H |
|  | Note: The DTMF sending listed above is DTMF signal sending in the handset OFF-HOOK mode. |  |  |  |


| VOLUME SETTING |  | LINEOUT A |  | RCVOL |
| :---: | :---: | :---: | :---: | :---: |
|  |  | (HIGH) | (LOW) |  |
| Receiver volume setting | Low |  |  | 1 |
|  | High |  |  | 0 |
| DTMF Transmission volume setting (Receiver) | Fixed |  |  | 1 |
| Key buzzer volume setting | Fixed |  |  |  |
| Speaker volume setting | Low | 1 | 1 |  |
|  | Middle | 1 | 0 |  |
|  | High | 0 | 1 |  |
| Ringer volume setting | Low | 1 | 1 |  |
|  | Middle | 1 | 0 |  |
|  | High | 0 | 1 |  |
| DTMF speaker volume setting | Low | 1 | 1 |  |
|  | Middle | 1 | 0 |  |
|  | High | 0 | 1 |  |

[Signals for status recognition according to input signals]

| Signal Name | Function |
| :---: | :--- |
| $\overline{\mathrm{RHS}}$ | H:The handset is in the on-hook state. <br> L: The handset is in the off-hook state. |
| Cl | Incoming call (CI) detection signal |

[Other signals]

| Signal Name | Function |
| :---: | :--- |
| TEL IN | Receiving signal from line or modem |
| TEL OUT | Transfer signal to line |
| SPOUT | Speaker output signal |
| TXOUT | Transmission (DTMF) analog signal output <br> from modem |
| RXIN | Reception (DTMF, others) analog signal input <br> into modem |

(Example: TEL speaking)


Fig. 7

## [4] Circuit description of power supply PWB

## 1. Block diagram



Fig. 8

## 2-1. Noise filter circuit

The input noise filter section is composed of $L$ and $C$, which reduces normal mode noise from the AC line and common mode noise to the AC line.

## 2-2. Rectifying/smoothing circuit

The AC input voltage is rectified by diode D1, 2, 3, 4 and smoothed by capacitor C5 to supply DC voltage to the switching circuit section.
Power thermistor TH1 suppresses inrush current at power switch-on.

## 2-3. Switching circuit

This circuit employs the self excited ringing choke convertor (RCC) system. In this system, the DC voltage supplied from the rectifying/smoothing section is converted into high frequency pulses by ON/OFF repetition of MOS FET Q1.
Energy is charged in the primary winding of T1 during ON period of Q1, and discharged to the secondary winding during OFF period.
The output voltage is controlled by adjusting ON period of Q1 which changes charge time of C9 through operation of photo-coupler PC1 from +24 V output.

## [5] Circuit description of CIS unit

## 1. CIS (Contact Image Sensor)

Cis is an image sensor which puts the original paper in close contact with the full-size sensor for scanning, being a monochromatic type with the pixel number of 1,728 dots and the main scanning density of 8 dots/mm.
It is composed of sensor, rod lens, LED light source, light-conductive plate, control circuit and so on, and the reading line and focus are previously adjusted as the unit.
Due to the full-size sensor, the focus distance is so short that the set is changed from the light weight type to the compact type.

The overcurrent protection is performed by bringing Q1 to OFF state through detection of voltage increase in the auxiliary winding of T1 by R5 and R7.

## 2-4. +5 V circuit

Each DC voltage supplied by rectifying the output of transformer T1 with diode D9 is stabilized.

## 2. Waveforms

The following clock is supplied from FC200 of the control board, and VO is output.
$\Phi T$


CISCLK


2V(TYP)
(White original paper)

Fig. 9

## CHAPTER 6. CIRCUIT SCHEMATICS AND PARTS LAYOUT








Control PWB parts layout (Top side)


Control PWB parts layout (Bottom side)


## N




$$
6-10
$$

## TEL/LIU PWB parts layout (Top side)



TEL/LIU PWB parts layout (Bottom side)



Power supply PWB parts layout




## CHAPTER 7. OPERATION FLOWCHART

## [1] Protocol



## [2] Power on sequence



## CHAPTER 8. OTHERS

## [1] Service tools

## 1. List

| NO. | PARTS CODE |  | DESCRIPTION | Q'TY |
| :---: | :---: | :---: | :---: | :---: |
| PRICE <br> RANK |  |  |  |  |
| 1 | C P W B S 3045 S C S 1 | Extension board unit (Control PWB) | 1 | AR |
| 2 | P S H E Z 3 3 5 4 S C Z Z | Shading wave memory standard paper | AD |  |

## Extension board unit

## EXTENSION CONTROL PWB



| NO. | PARTS CODE | DESCRIPTION | Q'TY | PRICE RANK |
| :---: | :---: | :---: | :---: | :---: |
| 1 | CCNW-4756SC01 | SPEAKER RELAY CABLE | 1 | AK |
| 2 | CCNW-4758SC01 | CIS RELAY CABLE | 1 | AQ |
| 3 | CCNW-4759SC01 | HEAD RELAY CABLE | 1 | AX |
| 4 | CCNW-4760SC01 | CAM SWITCH RELAY CABLE | 1 | AK |
| 5 | CCNW-4761SC01 | FRONT SENSOR RELAY CABLE | 1 | AK |
| 6 | CCNW-4763SC01 | MOTOR RELAY CABLE | 1 | AP |
| 7 | QCNW-4969SCZZ | SENSOR RELAY CABLE | 1 | BF |
| 8 | CCNW-274ASC01 | PANEL RELAY CABLE | 1 | AU |
| 9 | CCNW-275ASC01 | DOOR SWITCH RELAY CABLE | 1 | AL |
| 10 | CCNW-276ASC01 | CUTTER RELAY CABLE | 1 | AH |
| 11 | VRS -TS2AD102J | RESISTOR (1/10W $1 \mathrm{~K} \Omega \pm 5 \%$ )[R145] | 1 | AA |
| 12 | VHPSG206S //-1 | PHOTO TRANSISTOR [PI1] | 1 | AG |
| 13 | VHPSG206S //-1 | PHOTO TRANSISTOR [PI2] | 1 | AG |

## 2. Description

## 2-1. Relay board unit

1. Remove the TEL/LIU PWB, control PWB and Power Supply PWB from this unit, and mount the relay board unit instead.

- Before connecting the wiring to the relay board unit, set the test PWB switches to the fixed position.

2. The setting is as follows.
CONTROL

- The relay cables are used as one pair.
- The cover swich and hook switch are manually operated.
The recording paper sensor (PI1) and the hook switch are operated by OR of the mechanical unit switch and the test PWB switch. When performing installation in the machine unit, set the test PWB switches to the fixed position.

|  | Mechanical unit | PWB to be tested |
| :--- | :--- | :--- |
|  | Actual operation with mechanical unit |  |
| Recording paper <br> sensor | ON/OFF operation | OFF (Photo interrupter <br> is interrupted.) |
| Hook SW | ON/OFF operation | ON-HOOK |
|  | PWB sensor check |  |
| Recording paper <br> sensor | OFF | ON/OFF operation |
| Hook SW | ON-HOOK | ON/OFF operation |

PWB

## NOTE

* Recording paper: ON No recording paper: OFF


POWER
SUPPLY
PWB


## 3. Shading paper

The white and black basis is applied to remember the shading waveform. Be sure to perform this operation when replacing the battery or replacing the control PWB. Execute in the shading mode of DIAG mode.

UX-108 SERIES SHADING WAVE MEMORY STANDARD PAPER (PSHEZ3354SCZZ)

## [2] IC signal name

## CONTROL PWB UNIT

IC101: VHiXC61AN45M1 (XC61AN4502ML)


REG100: VHi62FP332P-1 (XC62FP3302P)


IC5: VHiW27E010-12 (27E010) ROM


IC1: VHiTC7WT74FU1 (TC7WT74)


IC6: VHiNJM2113M-1 (NJM2113M)


## IC8: VHiULN2003AN/ (ULN2003ANS)




## IC4: VHiFC2FM209-1 (FM209)



## FO-77 <br> mODeL UX-66

## CONTENTS

1 Cabinet, etc.
(2) Scanner unit

3 Upper cabinet

4 Document guide upper

5 Drive unit

6 Packing material \& Accessories (FO-77U)

7 Packing material \& Accessories (UX-66U)

8 Control PWB unit

9 TEL-Liu PWB unit

10 Power supply PWB unit

- Index

Because parts marked with " $\widehat{\wedge}$ " is indispensable for the machine safety maintenance and operation, it must be replaced with the parts specifi to the product specification.
[1] Cabinet, etc.


| NO. | PARTS CODE | PRICE RANK | NEW MARK | $\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \end{aligned}$ | DESCRIPTION |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [1] Cabinet etc. |  |  |  |  |  |  |
| 1 | DCEKP481BXH03 | AP | N | E | Operation panel unit | [77U] |
|  | DCEKP481BXH01 | AP | N | E | Operation panel unit | [66U] |
| 2 | CCNW-212AXH01 | AK | N | C | Panel cable ass'y |  |
| 5 | MSPRC2954XHZZ | AC |  | C | Hopper spring |  |
| 6 | NGERP2318XHZZ | AD |  | C | Pinion gear |  |
| 7 | PGIDM2560XHSB | AC | N | C | Hopper,guide,left | [77U] |
|  | PGIDM2560XHSA | AC | N | C | Hopper,guide,left | [66U] |
| 8 | PGIDM2561XHSB | AC | N | C | Hopper,guide,right | [77U] |
|  | PGIDM2561XHSA | AC | N | C | Hopper, guide,right | [66U] |
| 9 | PHOP-2104XHSB | AF | N | C | Hopper cover | [77U] |
|  | PHOP-2104XHSA | AF | N | C | Hopper cover | [66U] |
| 11 | QSW-M2296XHZZ | AD |  | B | Door sensor |  |
| 12 | CCNW-215AXH01 | AG | N | C | Speaker ass'y |  |
| 13 | GCABB2343XHSB | AK | N | D | Lower cabinet | [77U] |
|  | GCABB2343XHSA | AK | N | D | Lower cabinet | [66U] |
| 14 | MSPRP3119XHZZ | AC | N | C | Panel lock lever spring |  |
| 15 | MSPRP3123XHZZ | AC | N | C | Speaker holder lever spring |  |
| 16 | DCEKL483BXH01 | AX | N | E | TEL/Liu PWB unit |  |
| 17 | GCASP2110XHSB | AK | N | C | PWB case,top | [77U] |
|  | GCASP2110XHSA | AK | N | C | PWB case,top | [66U] |
| 18 | GCASP2111XHSB | AH | N | C | PWB case,bottom | [77U] |
|  | GCASP2111XHSA | AH | N | C | PWB case,bottom | [66U] |
| 19 | MLEVP2320XHZZ | AC | N | C | Hook switch joint lever |  |
| 20 | QACCD2027XHZZ | AR |  | B | AC cord ass'y |  |
| 21 | RDENT2142XHZZ | BA | N | E | Power supply PWB unit |  |
| 22 | GDAI-2083XHZZ | AF | N | C | Paper support guide |  |
| 23 | MLEVP2316XHZZ | AC | N | C | Paper sensor lever |  |
| 24 | MSPRD3116XHZZ | AB | N | C | Paper sensor lever spring |  |
| 25 | MSPRT3114XHZZ | AC | N | C | Pinch roller spring |  |
| 26 | NROLP2426XHZZ | AC | N | C | Pinch roller |  |
| 27 | PGIDM2559XHSB | AE | N | C | PO guide | [77U] |
|  | PGIDM2559XHSA | AE | N | C | PO guide | [66U] |
| 28 | LBSHP2112XHZZ | AB | N | C | Platen bearing |  |
| 29 | LFRM-2208XHZZ | AF | N | C | Head frame |  |
| 30 | LHLDZ2184XHZZ | AC | N | C | Head holder,left |  |
| 31 | LHLDZ2185XHZZ | AC | N | C | Head holder,right |  |
| 32 | MLEVP2315XHZZ | AC | N | C | Document sensor lever |  |
| 33 | MSPRC3112XHZZ | AC | N | C | Head spring 1 |  |
| 34 | MSPRC3148XHZZ | AC | N | C | Head spring 2 |  |
| 35 | MSPRD3115XHZZ | AB | N | C | Document sensor lever spring |  |
| 36 | NGERH2478XHZZ | AB | N | C | Platen gear |  |
| 37 | NROLR2425XHZZ | AP | N | C | Platen roller |  |
| 38 | PGIDM2558XHZZ | AD | N | C | Cutter guide upper |  |
| 39 | QCNW-209AXHZZ | AH | N | C | Head cable |  |
| 40 | QCNW-210AXHZZ | AC | N | C | Head earth cable |  |
| 41 | RHEDZ2059XHZZ | BF | N | B | Thermal head |  |
| 42 | NROLR2427XHZZ | AC | N | C | PO roller |  |
| 43 | PGUMR2160XHZZ | AE |  | C | PO roller rubber |  |
| 44 | PGIDM2564XHZZ | AD | N | C | PO roller guide |  |
| 45 | DCEKC088MXHZZ | BL | N | E | Control PWB unit(Within ROM) |  |
| 46 | GDAI-2082XHSB | AD | N | C | Handset cover | [77U] |
|  | GDAI-2082XHSA | AD | N | C | Handset cover | [66U] |
| 47 | LSTPP2054XHZZ | AC | N | C | Panel stopper |  |
| 48 | MARMP2023XHZZ | AB | N | C | Cutter arm |  |
| 49 | MLEVP2319XHZZ | AC | N | C | Hook switch lever |  |
| 50 | NGERH2477XHZZ | AC | N | C | PO gear |  |
| 51 | PCUT-2040SCZZ | AV | N | C | Cutter |  |
| 52 | PGIDM2566XHZZ | AC | N | C | Head guide |  |
| 53 | RCORF2125XHZZ | AE |  | B | Core(TRA31) |  |
| 54 | HPNLH2392XHSB | AE | N | D | Decoration panel | [77U] |
|  | HPNLH2392XHSA | AE | N | D | Decoration panel | [66U] |
| 55 | LBNDJ2006XHZZ | AA |  | C | Band(100mm) |  |
| 56 | MSPRD3169XHZZ |  | N | C | Cutter cam spring |  |
| B1 | LX-BZ2138XHZZ | AB |  | C | Screw(2x6) |  |
| B3 | XEBSD30P08000 | AA |  | C | Screw(3x8) |  |
| B4 | XBBSD30P06000 | AA |  | C | Screw(3x6) |  |
| B5 | XBPSN40P06K00 | AA |  | C | Screw(4x6) |  |
| B6 | XHBSD30P06000 | AA |  | C | Screw(3x6) |  |
| B7 | XEBSD30P12000 | AA |  | C | Screw(3x12) |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## [2] Scanner unit



| NO. | PARTS CODE | PRICE RANK | NEW | PART RANK | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [2] Scanner unit |  |  |  |  |  |
| 1 | LBSHP2110XHZZ | AB | N | C | Back roller bearing |
| 2 | LFRM-2209XHZZ | AF | N | C | Scanner frame |
| 3 | LHLDZ2180XHZZ | AC | N | C | CIS support,left |
| 4 | LHLDZ2181XHZZ | AC | N | C | CIS support,right |
| 5 | MLEVP2317XHZZ | AB | N | C | CIS release lever |
| 6 | MSPRC3117XHZZ | AB | N | C | CIS spring |
| 7 | NGERH2479XHZZ | AB | N | C | Back roller gear |
| 8 | NGERH2480XHZZ | AB | N | C | Reduction gear, 17/28Z |
| 9 | NGERH2481XHZZ | AB | N | C | Reduction gear,17/23Z |
| 10 | NROLR2375XHZZ | AL |  | C | Feed roller |
| 11 | NROLR2428XHZZ | AP | N | C | Back roller |
| 12 | NSFTZ2273XHZZ | AF |  | C | Feed roller shatt |
| 13 | PGIDM2562XHZZ | AD | N | C | Document guide lower |
| 14 | PSHEZ3436XHZZ | AC |  | C | CIS protect sheet |
| 15 | QCNW-211AXHZZ | AF | N | C | CIS cable |
| 16 | QCNW-213AXHZZ | AC | N | C | Front sensor cable |
| 17 | QSW-M2293XHZZ | AE | N | B | Front sensor |
| 18 | RUNTZ2054XHZZ | BE | N | B | CIS unit |
| 19 | LBNDJ2006XHZZ | AA |  | C | Band(100mm) |
| 20 | RCORF2123XHZZ | AD | N | B | Core |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

[3] Upper cabinet


| NO. | PARTS CODE | $\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \end{aligned}$ | NEW MARK | PART RANK |  | DESCRIPTION |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [3] Upper cabinet |  |  |  |  |  |  |  |
| 1 | CCNW-212AXH01 | AK | N | C | Panel cable ass'y |  |  |
| 3 | GCABA2342XHSB | AH | N | D | Upper cabinet |  | [77U] |
|  | GCABA2342XHSA | AH | N | D | Upper cabinet |  | [66U] |
| 4 | JBTN-2257XHSB | AD | N | C | 12 key |  | [77U] |
|  | JBTN-2257XHSA | AD | N | C | 12 key |  | [66U] |
| 5 | JBTN-2258XHSB | AC | N | C | Start key |  | [77U] |
|  | JBTN-2258XHSA | AC | N | C | Start key |  | [66U] |
| 6 | JBTN-2261XHSB | AC | N | C | Direct key |  | [77U] |
|  | JBTN-2261XHSA | AC | N | C | Direct key |  | [66U] |
| 7 | DCEKP482BXH01 | AQ | N | E | Operation panel PWB unit |  |  |
| B2 | XUBSD20P06000 | AA |  | C | Screw(2x6) |  |  |
|  | (Unit) |  |  |  |  |  |  |
| 901 | DCEKP481BXH03 | AP | N | E | Operation panel unit |  | [77U] |
|  | DCEKP481BXH01 | AP | N | E | Operation panel unit |  | [66U] |

[4] Document guide upper


| NO. | PARTS CODE | PRICE RANK | NEW MARK | PART RANK | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [4] Document guide upper |  |  |  |  |  |
| 1 | LPLTG2911XHZZ | AE |  | C | Separator rubber |
| 2 | LPLTP2908XHZZ | AE |  | C | Separator plate |
| 3 | LPLTP3051XHZZ | AB | N | C | Feed plate |
| 4 | MSPRT3140XHZZ | AA | N | C | Separate spring |
| 5 | MSPRT3139XHZZ | AA | N | C | Feed spring |
| 6 | PGIDM2554XHZZ | AF | N | C | Document guide upper |
| 7 | PSHEZ3510XHZZ |  | N | C | Blind sheet |

FO-77U
UX-66U
[5] Drive unit


| NO. | PARTS CODE | $\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \\ & \hline \end{aligned}$ | NEW MARK | $\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \\ & \hline \end{aligned}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [5] Drive unit |  |  |  |  |  |
| 1 | LFRM-2206XHZZ | AF | N | C | Drive unit frame |
| 2 | LPLTM3049XHZZ | AD | N | C | Motor plate |
| 3 | LPLTP3050XHZZ | AB | N | C | Cutter plate |
| 4 | MCAMP2027XHZZ | AC | N | C | Cam |
| 5 | MLEVP2311XHZZ | AB | N | C | Planet lever A |
| 6 | MLEVP2312XHZZ | AB | N | C | Planet lever B |
| 7 | MLEVP2313XHZZ | AC | N | C | Planet lever C |
| 8 | MLEVP2314XHZZ | AB | N | C | Mode lever |
| 9 | MSPRC2735XHZZ | AC |  | C | Planet gear spring |
| 10 | MSPRC3110XHZZ | AB | N | C | Cam spring |
| 11 | MSPRC3127XHZZ | AB | N | C | Cutter gear spring |
| 12 | NGERH2278XHZZ | AC |  | C | Planet gear |
| 13 | NGERH2379XHZZ | AC |  | C | Idler gear,25Z |
| 14 | NGERH2380XHZZ | AC |  | C | Reduction gear,17/36Z |
| 15 | NGERH2391XHZZ | AC |  | C | Reduction gear,17/30Z |
| 16 | NGERH2451XHZZ | AB |  | C | Idler gear,30Z |
| 17 | NGERH2475XHZZ | AB | N | C | Reduction gear,17/43Z |
| 18 | NGERH2476XHZZ | AB | N | C | Cutter gear |
| 19 | QCNW-207AXHZZ | AC | N | C | Cutter cable |
| 20 | QCNW-4933XHZZ | AC |  | C | Cam switch cable |
| 21 | QSW-F2224SCZZ | AE |  | B | Cam switch |
| 22 | RMOTZ2148XHZZ | AT | N | B | Motor |
| B3 | XEBSD30P08000 | AA |  | C | Screw(3x8) |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

[6] Packing material \& Accessories (FO-77U)


| NO. | PARTS CODE | PRICE | NEW | PART | DANK |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MARK | RANK | DESCRIPTION |  |  |  |

[6] Packing material \& Accessories(FO-77U)

| 1 | TINSE4017XHZZ | AG | N | D | Operation manual |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | DUNTK468BXHOG | AH | N | E | Handset |
| 3 | QCNW-3976XHOG | AT |  | C | Handset cord |
| 4 | PHOP-2105XHZZ | AD | N | C | Original document support |
| 5 | QCNW-3975XHGY | AG |  | C | Telephone line cord |
| 6 | SPAKP296BXHZZ | AE | N | D | Vinyl cover |
| 7 | SPAKA287BXHZZ | AE | N | D | Packing add.,left |
| 8 | SPAKA288BXHZZ | AE | N | D | Packing add.,right |
| 9 | SPAKA289BXHZZ | AC | N | D | Pad |
| 10 | SPAKC149BXHZZ | AH | N | D | Packing case |
| 16 | TCADZ2935XHZZ |  | N | D | Caution sheet |
| 17 | TCADZ2926XHZZ |  | N | D | Errata sheet |
| 18 | SPAKA388BXHZZ |  | N | D | Protection sheet, left |
| 19 | SPAKA389BXHZZ |  | N | D | Protection sheet, right |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

[7] Packing material \& Accessories (UX-66U)


| NO. | PARTS CODE | PRICE RANK | $\begin{gathered} \text { NEW } \\ \text { MARK } \\ \hline \end{gathered}$ | PART RANK | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [7] Packing material \& Accessories(UX-66U) |  |  |  |  |  |
| 1 | TINSE4010XHZZ | AG | N | D | Operation manual |
| 2 | DUNTK468BXHBG | AH | N | E | Handset |
| 3 | QCNW-3976XHBG | AK |  | C | Handset cord |
| 4 | PHOP-2105XHZZ | AD | N | C | Original document support |
| 5 | QCNW-3975XHGY | AG |  | C | Telephone line cord |
| 6 | SPAKP296BXHZZ | AE | N | D | Vinyl cover |
| 7 | SPAKA287BXHZZ | AE | N | D | Packing add.,left |
| 8 | SPAKA288BXHZZ | AE | N | D | Packing add.,right |
| 9 | SPAKA289BXHZZ | AC | N | D | Pad |
| 10 | SPAKC124BXHZZ | AH | N | D | Packing case |
| 11 | TLABM253AXHZZ | AF | N | D | Box label |
| 12 | TLABH418AXHZZ | AC | N | D | Service call label |
| 13 | TCADZ2860XHZZ | AD | N | D | Pop card |
| 14 | TCADZ2869XHZZ | AB | N | D | Quick setup guide |
| 15 | TCADZ2786XHZZ | AC |  | D | Read me first sheet |
| 16 | TCADZ2935XHZZ |  | N | D | Caution sheet |
| 17 | TCADZ2926XHZZ |  | N | D | Errata sheet |
| 18 | SPAKA388BXHZZ |  | N | D | Protection sheet, left |
| 19 | SPAKA389BXHZZ |  | N | D | Protection sheet, right |


| NO. | PARTS |
| :--- | ---: |
| [8] Control PWB unit |  |


| 1 | UBATL2046SCZZ | AK | B | Battery(CR2032T34) | [BAT1] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | VCKYTV1HB102K | AA | C | Capacitor(50WV 1000PF) | [C1] |
| 3 | VCKYTV1HB102K | AA | C | Capacitor(50WV 1000PF) | [C2] |
| 4 | VCKYTV1EF104Z | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C3] |
| 5 | VCKYTV1HB103K | AB | C | Capacitor(50WV 0.01 $\mu \mathrm{F}$ ) | [C4] |
| 6 | VCEAGA1HW106M | AA | C | Capacitor(50WV 10رF) | [C5] |
| 7 | VCKYTV1EF104Z | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C6] |
| 8 | VCEAGA1HW106M | AA | C | Capacitor(50WV 10¢F) | [C7] |
| 9 | VRS-TS2AD000J | AA | C | Resistor(1/10W $0 \Omega \pm 5 \%$ ) | [C8] |
| 10 | VCEAGA1EW476M | AA | C | Capacitor(25WV 47 $\mu \mathrm{F}$ ) | [C9] |
| 11 | VCEAGA1EW476M | AA | C | Capacitor(25WV 47 $\mu \mathrm{F}$ ) | [C11] |
| 12 | VCEAGA1HW106M | AA | C | Capacitor(50WV 10 $\mu \mathrm{F}$ ) | [C15] |
| 13 | VCEAGA1HW226M | AB | C | Capacitor(50WV 22 $\mu$ F) | [C17] |
| 14 | VCEAGA1EW476M | AA | C | Capacitor(25WV 47 $\mu \mathrm{F}$ ) | [C18] |
| 15 | VCKYTV1HB102K | AA | C | Capacitor(50WV 1000PF) | [C19] |
| 16 | VCKYTV1HB102K | AA | C | Capacitor(50WV 1000PF) | [C20] |
| 17 | VCEAGA1HW107M | AA | C | Capacitor(50WV 100 $\mu \mathrm{F}$ ) | [C21] |
| 18 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C22] |
| 19 | VCKYTV1HF104Z | AA | C | Capacitor(50WV 0.1 $\mu \mathrm{F}$ ) | [C100] |
| 20 | VCCCTV1HH120J | AA | C | Capacitor(50WV 12PF) | [C101] |
| 21 | VCCCTV1HH120J | AA | C | Capacitor(50WV 12PF) | [C102] |
| 22 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C103] |
| 23 | VCKYTV1HB102K | AA | C | Capacitor(50WV 1000PF) | [C104] |
| 24 | VCKYTV1HB102K | AA | C | Capacitor(50WV 1000PF) | [C105] |
| 25 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C106] |
| 26 | VCKYTV1HB102K | AA | C | Capacitor(50WV 1000PF) | [C107] |
| 27 | VCKYTV1HB222K | AA | C | Capacitor(50WV 2200PF) | [C108] |
| 28 | VCKYTV1HB222K | AA | C | Capacitor(50WV 2200PF) | [C109] |
| 29 | VCKYTV1EF104Z | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C110] |
| 30 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C111] |
| 31 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C112] |
| 32 | VCKYTV1EF104Z | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C113] |
| 33 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C114] |
| 34 | VCCCTV1HH220J | AA | C | Capacitor(50WV 22PF) | [C115] |
| 35 | VCCCTV1HH220J | AA | C | Capacitor(50WV 22PF) | [C116] |
| 36 | VCKYTV1HB222K | AA | C | Capacitor(50WV 2200PF) | [C117] |
| 37 | VCKYTV1EF104Z | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C118] |
| 38 | VCKYTV1HB222K | AA | C | Capacitor(50WV 2200PF) | [C119] |
| 39 | VCKYTV1EF104Z | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C120] |
| 40 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C121] |
| 41 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C122] |
| 42 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C123] |
| 43 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C124] |
| 44 | VCCCTV1HH220J | AA | C | Capacitor(50WV 22PF) | [C125] |
| 45 | VCCCTV1HH220J | AA | C | Capacitor(50WV 22PF) | [C126] |
| 46 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C127] |
| 47 | VCKYTV1HB102K | AA | C | Capacitor(50WV 1000PF) | [C128] |
| 48 | VCKYTV1EF104Z | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C129] |
| 49 | VCKYTV1EB104K | AA | C | Capacitor(25WV 0.1 1 F) | [C130] |
| 50 | VCKYTV1EF104Z | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C131] |
| 51 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C132] |
| 52 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C133] |
| 53 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C134] |
| 54 | VCKYTV1HB222K | AA | C | Capacitor(50WV 2200PF) | [C135] |
| 55 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C136] |
| 56 | VCKYTV1EF104Z | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C137] |
| 57 | VCCCTV1HH220J | AA | C | Capacitor(50WV 22PF) | [C138] |
| 58 | VCCCTV1HH220J | AA | C | Capacitor(50WV 22PF) | [C139] |
| 59 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C140] |
| 60 | VCCCTV1HH220J | AA | C | Capacitor(50WV 22PF) | [C141] |
| 61 | VCCCTV1HH220J | AA | C | Capacitor(50WV 22PF) | [C142] |
| 62 | VCKYTV1HB222K | AA | C | Capacitor(50WV 2200PF) | [C143] |
| 63 | RCILZ2145XHZZ | AF | C | Coil(HM601) | [C144] |
| 64 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C145] |
| 65 | VCKYTV1CF105Z | $A B$ | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C146] |
| 66 | RCILZ2145XHZZ | AF | C | Coil(HM601) | [C147] |
| 67 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C148] |
| 68 | VCCCTV1HH220J | AA | C | Capacitor(50WV 22PF) | [C150] |
| 69 | VRS-TS2AD000J | AA | C | Resistor(1/10W $0 \Omega \pm 5 \%$ ) | [C151] |
| 70 | VCKYTV1EB104K | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C154] |
| 71 | VCKYTV1EB104K | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C156] |
| 72 | VRS-TS2AD000J | AA | C | Resistor(1/10W $0 \Omega \pm 5 \%$ ) | [C157] |
| 73 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C158] |
| 74 | VCKYTV1HB221K | AA | C | Capacitor(50WV 220PF) | [C159] |
| 75 | VCKYTV1HB103K | AB | C | Capacitor(50WV 0.01 $\mu \mathrm{F}$ ) | [C160] |
| 76 | VCKYTV1EF104Z | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C161] |
| 77 | VCKYTV1HB472K | AA | C | Capacitor(50WV 4700PF) | [C164] |
| 78 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C165] |
| 79 | VCKYTV1CF105Z | AB | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C166] |
| 80 | VCKYTV1EF104Z | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C167] |


| NO. | PARTS CODE | PRICE RANK | NEW MARK | PART RANK | DESCRIPTION |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [8] Control PWB unit |  |  |  |  |  |  |
| 81 | VCKYTV1HF104Z | AA |  | C | Capacitor(50WV 0.1 $\mu \mathrm{F}$ ) | [C170] |
| 82 | VCKYTV1EF104Z | AA |  | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C171] |
| 83 | VCKYTV1HB102K | AA |  | C | Capacitor(50WV 1000PF) | [C172] |
| 84 | VCKYTV1HB102K | AA |  | C | Capacitor(50WV 1000PF) | [C173] |
| 85 | QCNCM7014SC0G | AB |  | C | Connector(7pin) | [CNCIS] |
| 86 | QCNCM2442SC0B | AB |  | C | Conector(2pin) | [CNCSW] |
| 87 | QCNCM7014SC0C | AA |  | C | Connector(3pin) | [CNCUT] |
| 88 | QCNCM705BAF06 | AB |  | C | Connector(2pin) | [CNDR] |
| 89 | QCNCM7014SC0B | AD |  | C | Connector(2pin) | [CNFRS] |
| 90 | QCNCW2500SC1B | AF |  | C | Connector(12pin) | [CNLIUA] |
| 91 | QCNCM7014SC0F | AB |  | C | Connector(6pin) | [CNMT] |
| 92 | QCNCM7014SC1F | AD |  | C | Connector(16pin) | [CNPN] |
| 93 | QCNCW2500SC0F | AE |  | C | Connector(6pin) | [CNPW] |
| 94 | QCNCM2401SC0B | AA |  | C | Connector(2pin) | [CNSP] |
| 95 | QCNCM7014SC1F | AD |  | C | Connector(16pin) | [CNTH] |
| 96 | VRS-HT3AA101J | AA |  | C | Resistor(1W $100 \Omega \pm 5 \%$ ) | [D1] |
| 97 | VHD1SS355//-1 | AB |  | B | Diode(1SS355) | [D100] |
| 98 | VHD1SS355//-1 | AB |  | B | Diode(1SS355) | D101] |
| 99 | VHD1SS355//-1 | AB |  | B | Diode(1SS355) | D102] |
| 100 | VHDHRW0202B-1 | AD |  | B | Diode(HRW0202B) | D103] |
| 101 | VHD1SS355//-1 | AB |  | B | Diode(1SS355) | D104] |
| 102 | QFS-P2010SCZZ | AD | N | B | IC protector(KAB2402) | [FU100] |
| 103 | VHITC7WT74FU1 | AF | N | B | IC(TC7WT74) | [IC1] |
| 104 | VHIFC2FM209-1 | BD | N | B | IC(FC200)(Within IC2 and IC4 pair) | [IC2] |
| 105 | VHIW24258S7LE | AQ |  | B | IC(W24258S-70LE) | [IC3] |
| 106 | VHIFC2FM209-1 | BD | N | B | IC(FM209)(Within IC2 and IC4 pair) | [IC4] |
| 107 | QSOCZ2051SC32 | AC |  | C | IC socket(32pin) | [IC5] |
|  | VHI27010FZG0B | BM | N | B | IC,EPROM(1MB) | [IC5] |
| 109 | VHINJM2113M-1 | AG |  | B | IC(NJM2113M) | [IC6] |
| 110 | VHIULN2003AN/ | AE |  | B | IC(ULN2003ANS) | [IC8] |
| 111 | VHIXC61AN45M1 | AE | N | B | IC(XC61AN4502ML) | [IC101] |
| 112 | RCILZ2145XHZZ | AF |  | C | Coil(HM601) | [L1] |
| 113 | RCILZ2145XHZZ | AF |  | C | Coil(HM601) | [L3] |
| 114 | RCILZ2145XHZZ | AF |  | C | Coil(HM601) | [4] |
| 115 | RCILZ2145XHZZ | AF |  | C | Coil(HM601) | [L100] |
| 116 | RCILZ2145XHZZ | AF |  | C | Coil(HM601) | [L101] |
| 117 | RCILZ2145XHZZ | AF |  | C | Coil(HM601) | [L102] |
| 118 | RCILZ2145XHZZ | AF |  | C | Coil(HM601) | [L103] |
| 119 | RCILZ2145XHZZ | AF |  | C | Coil(HM601) | [L104] |
| 120 | RCILZ2145XHZZ | AF |  | C | Coil(HM601) | [L105] |
| 121 | RCILZ2145XHZZ | AF |  | C | Coil(HM601) | [L106] |
| 122 | VHPSG206S//-1 | AG |  | B | Photo transistor(SG206S) | [PI1] |
| 123 | VHPSG206S//-1 | AG |  | B | Photo transistor(SG206S) | [P12] |
| 124 | VS2SA1037KS-1 | AB |  | B | Transistor(2SA1037KS) | [Q100] |
| 125 | VSRNC1402//-1 | AC |  | B | Transistor(RNC1402) | [Q103] |
| 126 | VS2SA1037KS-1 | AB |  | B | Transistor(2SA1037KS) | [Q104] |
| 127 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | [R2] |
| 128 | VRS-TS2AD271J | AA |  | C | Resistor(1/10W $270 \Omega \pm 5 \%$ ) | [R4] |
| 129 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | [R6] |
| 130 | VRS-TS2AD103J | AA |  | C | Resistor(1/10W $10 \mathrm{~K} \Omega \pm 5 \%$ ) | [R8] |
| 131 | VRS-TS2AD106J | AA |  | C | Resistor(1/10W 10M $2 \pm 5 \%$ ) | [R12] |
| 132 | VRS-TS2AD3R0J | AA |  | C | Resistor(1/10W $3.0 \Omega \pm 5 \%$ ) | [R14] |
| 133 | VRS-TS2AD000J | AA |  | C | Resistor(1/10W $0 \Omega \pm 5 \%$ ) | [R17] |
| 134 | VRS-TS2AD201J | AG |  | C | Resistor(1/10W $200 \Omega \pm 5 \%$ ) | [R100] |
| 135 | VRS-TS2AD000J | AA |  | C | Resistor(1/10W $0 \Omega \pm 5 \%$ ) | [R101] |
| 136 | VRS-TS2AD471J | AA |  | C | Resistor(1/10W $470 \Omega \pm 5 \%$ ) | [R102] |
| 137 | VRS-TS2AD471J | AA |  | C | Resistor(1/10W $470 \Omega \pm 5 \%$ ) | R103] |
| 138 | VRS-TS2AD271J | AA |  | C | Resistor(1/10W $270 \Omega \pm 5 \%$ ) | [R104] |
| 139 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | R105] |
| 140 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | [R106] |
| 141 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | [R107] |
| 142 | VRS-TS2AD223J | AA |  | C | Resistor(1/10W $22 \mathrm{~K} \Omega \pm 5 \%$ ) | R108] |
| 143 | VRS-TS2AD151J | AA |  | C | Resistor(1/10W $150 \Omega \pm 5 \%$ ) | [R109] |
| 144 | VRS-TS2AD471J | AA |  | C | Resistor(1/10W $470 \Omega \pm 5 \%$ ) | R110] |
| 145 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | R111] |
| 146 | VRS-TS2AD201J | AG |  | C | Resistor(1/10W $200 \Omega \pm 5 \%$ ) | [R112] |
| 147 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | [R113] |
| 148 | VRS-TS2AD471J | AA |  | C | Resistor(1/10W $470 \Omega \pm 5 \%$ ) | [R115] |
| 149 | VRS-TS2AD471J | AA |  | C | Resistor(1/10W 470 $\pm 5 \%$ ) | R117] |
| 150 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | [R119] |
| 151 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | [R120] |
| 152 | VRS-TS2AD223J | AA |  | C | Resistor(1/10W $22 \mathrm{~K} \Omega \pm 5 \%$ ) | R121] |
| 153 | VRS-TS2AD103J | AA |  | C | Resistor(1/10W 10K $\Omega \pm 5 \%$ ) | R122] |
| 154 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | [R123] |
| 155 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | [R124] |
| 156 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | R125] |
| 157 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | R126] |
| 158 | VRS-TS2AD512J | AA |  | C | Resistor(1/10W $5.1 \mathrm{~K} \Omega \pm 5 \%$ ) | R128] |
| 159 | VRS-TS2AD102J | AA |  | C | Resistor(1/10W $1 \mathrm{~K} \Omega \pm 5 \%$ ) | R129] |
| 160 | VRS-TS2AD000J | AA |  | C | Resistor(1/10W $0 \Omega \pm 5 \%$ ) | [R130] |


| NO. | PARTS CODE | PRICE <br> RANK | NEW <br> MARK | PAR <br> RAN |
| :---: | :---: | :---: | :---: | :---: |
| [8] Control PWB unit |  |  |  |  |

## DESCRIPTION

[8] Control PWB unit

| 161 | VRS-TS2AD105J | AA |  | C | Resistor(1/10W 1.0M $2 \pm 5 \%$ ) | [R131] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 162 | VRS-TS2AD103J | AA |  | C | Resistor(1/10W $10 \mathrm{~K} \Omega \pm 5 \%$ ) | [R132] |
| 163 | VRS-TS2AD121J | AA |  | C | Resistor(1/10W $120 \Omega \pm 5 \%$ ) | [R133] |
| 164 | VRS-TS2AD222J | AA |  | C | Resistor(1/10W $2.2 \mathrm{~K} \Omega \pm 5 \%$ ) | [R134] |
| 165 | VRS-TS2AD333J | AA |  | C | Resistor(1/10W $33 \mathrm{~K} \Omega \pm 5 \%$ ) | [R135] |
| 166 | VRS-TS2AD000J | AA |  | C | Resistor(1/10W $0 \Omega \pm 5 \%$ ) | [R136] |
| 167 | VRS-TS2AD000J | AA |  | C | Resistor(1/10W $0 \Omega \pm 5 \%$ ) | [R138] |
| 168 | VRS-TS2AD224J | AA |  | C | Resistor(1/10W $220 \mathrm{~K} \Omega \pm 5 \%$ ) | [R139] |
| 169 | VRS-TS2AD153J | AA |  | C | Resistor(1/10W $15 \mathrm{~K} \Omega \pm 5 \%$ ) | [R140] |
| 170 | VRS-TS2AD203J | AA |  | C | Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$ ) | [R141] |
| 171 | VRS-TS2AD303J | AA |  | C | Resistor(1/10W $30 \mathrm{~K} \Omega \pm 5 \%$ ) | [R142] |
| 172 | VRS-TS2AD433J | AA |  | C | Resistor(1/10W $43 \mathrm{~K} \Omega \pm 5 \%$ ) | [R143] |
| 173 | VRS-TS2AD103J | AA |  | C | Resistor(1/10W $10 \mathrm{~K} \Omega \pm 5 \%$ ) | [R144] |
| 174 | VRS-TS2AD102J | AA |  | C | Resistor(1/10W 1K $2 \pm 5 \%$ ) | [R145] |
| 175 | VRS-TS2AD000J | AA |  | C | Resistor(1/10W $0 \Omega \pm 5 \%)$ | [R146] |
| 176 | VRS-TS2AD000J | AA |  | C | Resistor(1/10W $0 \Omega \pm 5 \%$ ) | [R148] |
| 177 | VRS-TS2AD104J | AA |  | C | Resistor(1/10W $100 \mathrm{~K} \Omega \pm 5 \%$ ) | [R149] |
| 178 | VRS-TS2AD103J | AA |  | C | Resistor(1/10W 10K $\Omega \pm 5 \%$ ) | [R151] |
| 179 | VRS-TS2AD000J | AA |  | C | Resistor(1/10W $0 \Omega \pm 5 \%$ ) | [R152] |
| 180 | VRS-TS2AD473J | AA |  | C | Resistor(1/10W $47 \mathrm{~K} \Omega \pm 5 \%$ ) | [R153] |
| 181 | VRS-TS2AD104J | AA |  | C | Resistor(1/10W $100 \mathrm{~K} \Omega \pm 5 \%$ ) | [R154] |
| 182 | VRS-TS2AD104J | AA |  | C | Resistor(1/10W $100 \mathrm{~K} \Omega \pm 5 \%$ ) | [R155] |
| 183 | VRS-TS2AD102J | AA |  | C | Resistor(1/10W $1 \mathrm{~K} \Omega \pm 5 \%$ ) | [R156] |
| 184 | VRS-TS2AD203J | AA |  | C | Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$ ) | [R157] |
| 185 | VRS-TS2AD512J | AA |  | C | Resistor(1/10W $5.1 \mathrm{~K} \Omega \pm 5 \%$ ) | [R158] |
| 186 | VRS-TS2AD562J | AA |  | C | Resistor(1/10W $5.6 \mathrm{~K} \Omega \pm 5 \%$ ) | [R160] |
| 187 | VRS-TS2AD474J | AA |  | C | Resistor(1/10W $470 \mathrm{~K} \Omega \pm 5 \%$ ) | [R161] |
| 188 | VRS-TS2AD203J | AA |  | C | Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$ ) | [R162] |
| 189 | VRS-TS2AD104J | AA |  | C | Resistor(1/10W $100 \mathrm{~K} \Omega \pm 5 \%$ ) | [R165] |
| 190 | VRS-TS2AD471J | AA |  | C | Resistor(1/10W $470 \Omega \pm 5 \%$ ) | [R166] |
| 191 | VRS-TS2AD271J | AA |  | C | Resistor(1/10W $270 \Omega \pm 5 \%$ ) | [R167] |
| 192 | VRS-TS2AD103J | AA |  | C | Resistor(1/10W $10 \mathrm{~K} \Omega \pm 5 \%$ ) | [R168] |
| 193 | VRS-TS2AD680J | AA |  | C | Resistor(1/10W $68 \Omega \pm 5 \%$ ) | [R170] |
| 194 | RR-TZ3018SCZZ | AC |  | C | Block resistor(470 ${ }^{\text {a }}$ 4) | [RA1] |
| 195 | RR-TZ3017SCZZ | AC |  | C | Block resistor(270 $2 \times 4$ ) | [RA2] |
| 196 | RR-TZ3017SCZZ | AC |  | C | Block resistor(270 $2 \times 4$ ) | [RA3] |
| 197 | RR-TZ3018SCZZ | AC |  | C | Block resistor(470 $2 \times 4$ ) | [RA4] |
| 198 | RR-TZ3018SCZZ | AC |  | C | Block resistor(470 $2 \times 4$ ) | [RA5] |
| 199 | RR-TZ3017SCZZ | AC |  | C | Block resistor(270 $2 \times 4$ ) | [RA6] |
| 200 | RR-TZ3017SCZZ | AC |  | C | Block resistor(270 $2 \times 4$ ) | [RA7] |
| 201 | RR-TZ3018SCZZ | AC |  | C | Block resistor(470 $2 \times 4$ ) | [RA8] |
| 202 | RR-TZ3017SCZZ | AC |  | C | Block resistor(270 $2 \times 4$ ) | [RA9] |
| 203 | RR-TZ3018SCZZ | AC |  | C | Block resistor(470 $2 \times 4$ ) | [RA11] |
| 204 | RR-TZ3018SCZZ | AC |  | C | Block resistor(470 ${ }^{\text {a }}$ ( ${ }^{\text {a }}$ | [RA12] |
| 205 | RR-TZ3018SCZZ | AC |  | C | Block resistor(470 ${ }^{\text {a }}$ 4) | [RA13] |
| 206 | RR-TZ3018SCZZ | AC |  | C | Block resistor(470 $2 \times 4$ ) | [RA14] |
| 207 | VHI62FP332P-1 | AF |  | B | IC(XC62FP3302P) | [REG100] |
| 208 | RRLYD3138XHZZ | AG |  | B | Relay(DQ24D1) | [RY1] |
| 209 | RCRSQ2157SCZZ | AF | N | B | Crystal(32.256MHz) | [X1] |
| 210 | RCRSB0297AFZZ | AD |  | B | Crystal(32.768kHz) | [X2] |
| 211 | TLABP3078SCZZ | AA |  | D | Shading label(for EP-ROM) |  |
|  | (Unit) |  |  |  |  |  |
| 901 | DCEKC088MXHZZ | BL | N | E | Control PWB unit(Within ROM) |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

[9] TEL/Liu PWB unit

| 1 | VHVRA391PV6-1 | AE | B | Varistor(RA391PV6) | [AR1] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | QCNW-4753XHZZ | AE | C | Cable | [ARG] |
| 3 | RC-FZ3024SCZZ | AG | C | Capacitor(250WV 0.82 $\mu \mathrm{F}$ ) | [C3] |
| 4 | VCEAGA1HW226M | AB | C | Capacitor(50WV 22 $\mu \mathrm{F}$ ) | [C5] |
| 5 | VCEAGA1HW226M | AB | C | Capacitor(50WV 22 $\mu \mathrm{F}$ ) | [C6] |
| 6 | VCEAGA1HW106M | AA | C | Capacitor(50WV 10رF) | [C7] |
| 7 | VCEAGA1HW475M | AA | C | Capacitor(50WV 4.7 $\mu \mathrm{F}$ ) | [C9] |
| 8 | VCEAGA1HW226M | AB | C | Capacitor(50WV 22 2 F ) | [C11] |
| 9 | VCEAGA1HW226M | AB | C | Capacitor(50WV 22 F ) | [C12] |
| 10 | VCEAGA1HW226M | AB | C | Capacitor(50WV 22 F ) | C13] |
| 11 | VCKYTV1HB222K | AA | C | Capacitor(50WV 2200PF) | [C104] |
| 12 | VCKYTV1HB222K | AA | C | Capacitor(50WV 2200PF) | [C105] |
| 13 | VCKYTV1EF104Z | AA | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C106] |
| 14 | VCKYTV1HB102K | AA | C | Capacitor(50WV 1000PF) | [C107] |
| 15 | VCKYTV1HB392K | AA | C | Capacitor(50WV 3900PF) | [C108] |
| 16 | VCKYTV1HB221K | AA | C | Capacitor(50WV 220PF) | [C109] |
| 17 | VCKYTV1HB221K | AA | C | Capacitor(50WV 220PF) | [C111] |
| 18 | VCKYTV1HF104Z | AA | C | Capacitor(50WV 0.1 $\mu \mathrm{F}$ ) | [C112] |
| 19 | VCKYTV1HB102K | AA | C | Capacitor(50WV 1000PF) | [C113] |
| 20 | VCKYTV1HF104Z | AA | C | Capacitor(50WV 0.1 $\mu \mathrm{F}$ ) | [C114] |
| 21 | VCCCTV1HH330J | AA | C | Capacitor(50WV 33PF) | [C115] |

## UX-66U

| NO. | PARTS CODE | PRICE RANK | NEW MARK | PART RANK | DESCRIPTION |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [9] TEL/Liu PWB unit |  |  |  |  |  |  |
| 22 | VCKYTV1EF104Z | AA |  | C | Capacitor(25WV 0.1 $\mu \mathrm{F}$ ) | [C117] |
| 23 | VCKYTV1HF104Z | AA |  | C | Capacitor(50WV 0.1 $\mu \mathrm{F}$ ) | [C118] |
| 24 | VCKYTV1HB821K | AA |  | C | Capacitor(50WV 820PF) | [C120] |
| 25 | VCKYTV1CF105Z | AB |  | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C122] |
| 26 | VCKYTV1CF105Z | AB |  | C | Capacitor(16WV 1 $\mu \mathrm{F}$ ) | [C124] |
| 27 | VCKYTV1HB393K | AB |  | C | Capacitor(50WV 0.039 ${ }^{\text {F }}$ ) | [C127] |
| 28 | RRLYD3433XHZZ | AH |  | B | Relay | [CML1] |
| 29 | QJAKZ2079XH0D | AD | N | C | Jack | [CNHJ] |
| 30 | QCNCM2548SC1B | AH |  | C | Connector(12pin) | [CNLIUA] |
| 31 | QJAKZ2060SC0B | AD |  | C | Jack | [CNLNJ] |
| 32 | VHDDSS133/-1 | AA |  | B | Diode(1SS133) | [D1] |
| 33 | VHDDSS133/-1 | AA |  | B | Diode(1SS133) | [D4] |
| 34 | QSW-Z2263XHZZ | AG |  | B | Hook switch | [HOOK SW] |
| 35 | VHINJM2904M-2 | AG |  | B | IC(NJM2904M) | [IC101] |
| 36 | VHINJM2904M-2 | AG |  | B | IC(NJM2904M) | [IC102] |
| 37 | RFILN2024XHZZ | AG |  | C | Coil(TR0703) | [L3A] |
| 38 | RFILN2024XHZZ | AG |  | C | Coil(TR0703) | [L3B] |
| 39 | RFILN2024XHZZ | AG |  | C | Coil(TR0703) | [L6] |
| 40 | RFILN2024XHZZ | AG |  | C | Coil(TR0703) | [L7] |
| 41 | RFILN2024XHZZ | AG |  | C | Coil(TR0703) | [L8] |
| 42 | VHPTLP521-1BL | AE |  | B | Photo coupler(TLP521) | [PC5] |
| 43 | VS2SC2412KR-1 | AD |  | B | Transistor(2SC2412K) | [Q101] |
| 44 | VSRNC1402//-1 | AC |  | B | Transistor(RNC1402) | [Q104] |
| 45 | VSRNC1402//-1 | AC |  | B | Transistor(RNC1402) | [Q107] |
| 46 | VRD-HT2HY223J | AA |  | C | Resistor(1/2W $22 \mathrm{~K} \Omega \pm 5 \%$ ) | [R3] |
| 47 | VRS-TS2AD223J | AA |  | C | Resistor(1/10W $22 \mathrm{~K} \Omega \pm 5 \%$ ) | [R101] |
| 48 | VRS-TS2AD152J | AA |  | C | Resistor(1/10W $1.5 \mathrm{~K} \Omega \pm 5 \%$ ) | [R108] |
| 49 | VRS-TS2AD102J | AA |  | C | Resistor(1/10W 1K ${ }^{\text {( }}$ (5\%) | [R109] |
| 50 | VRS-TS2AD512J | AA |  | C | Resistor(1/10W 5.1K $2 \pm 5 \%$ ) | [R110] |
| 51 | VRS-TS2AD203J | AA |  | C | Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$ ) | [R111] |
| 52 | VRS-TS2AD000J | AA |  | C | Resistor(1/10W $0 \Omega \pm 5 \%$ ) | [R112] |
| 53 | VRS-TS2AD203J | AA |  | C | Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$ ) | [R113] |
| 54 | VRS-TS2AD433J | AA |  | C | Resistor (1/10W $43 \mathrm{~K} \Omega \pm 5 \%$ ) | [R114] |
| 55 | VRSTS2AD8662F | AA |  | C | Resistor(1/10W $86.6 \mathrm{~K} \Omega \pm 1 \%$ ) | [R115] |
| 56 | VRS-TS2AD332J | AA |  | C | Resistor(1/10W $3.3 \mathrm{~K} \Omega \pm 5 \%$ ) | [R116] |
| 57 | VRS-TS2AD102J | AA |  | C | Resistor(1/10W $1 \mathrm{~K} \Omega \pm 5 \%$ ) | [R118] |
| 58 | VRS-TS2AD151J | AA |  | C | Resistor(1/10W $150 \Omega \pm 5 \%$ ) | [R123] |
| 59 | VRS-TS2AD332J | AA |  | C | Resistor(1/10W $3.3 \mathrm{~K} \Omega \pm 5 \%$ ) | [R125] |
| 60 | VRS-TS2AD224J | AA |  | C | Resistor(1/10W $220 \mathrm{~K} \Omega \pm 5 \%$ ) | [R126] |
| 61 | VRS-TS2AD393J | AA |  | C | Resistor(1/10W $39 \mathrm{~K} \Omega \pm 5 \%$ ) | [R127] |
| 62 | VRS-TS2AD822J | AA |  | C | Resistor(1/10W $8.2 \mathrm{~K} \Omega \pm 5 \%$ ) | [R128] |
| 63 | VRS-TS2AD621J | AA |  | C | Resistor(1/10W $620 \Omega \pm 5 \%$ ) | [R129] |
| 64 | VRS-TS2AD000J | AA |  | C | Resistor(1/10W $0 \Omega \pm 5 \%$ ) | [R130] |
| 65 | VRS-TS2AD332J | AA |  | C | Resistor(1/10W $3.3 \mathrm{~K} \Omega \pm 5 \%$ ) | [R131] |
| 66 | VRS-TS2AD000J | AA |  | C | Resistor(1/10W $0 \Omega \pm 5 \%$ ) | [R132] |
| 67 | VRS-TS2AD301J | AA |  | C | Resistor(1/10W $300 \Omega \pm 5 \%$ ) | [R133] |
| 68 | VRS-TS2AD203J | AA |  | C | Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$ ) | [R134] |
| 69 | VRS-TS2AD101J | AA |  | C | Resistor(1/10W $100 \Omega \pm 5 \%$ ) | [R135] |
| 70 | VRS-TS2AD203J | AA |  | C | Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$ ) | [R140] |
| 71 | VRS-TS2AD473J | AA |  | C | Resistor(1/10W $47 \mathrm{~K} \Omega \pm 5 \%$ ) | [R141] |
| 72 | VRS-TS2AD332J | AA |  | C | Resistor(1/10W $3.3 \mathrm{~K} \Omega \pm 5 \%$ ) | [R142] |
| 73 | VRS-TS2AD153J | AA |  | C | Resistor(1/10W $15 \mathrm{~K} \Omega \pm 5 \%$ ) | [R143] |
| 74 | VRS-TS2AD472J | AA |  | C | Resistor(1/10W 4.7K $\Omega \pm 5 \%$ ) | [R144] |
| 75 | RTRNI2164XHZZ | AG | N | B | Transformer | [T1] |
| 76 | VHVERZV5D471/ | AC |  | B | Varistor(ERZVA5D471) | [VA1] |
| 77 | VHVERZV5D471/ | AC |  | B | Varistor(ERZVA5D471) | [VA2] |
| 78 | VHEHZ27-1//-1 | AB |  | B | Zener diode(HZ27C-1TA) | [ZD4] |
|  | (Unit) |  |  |  |  |  |
| 901 | DCEKL483BXH01 | AX | N | E | TEL/Liu PWB unit |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

[10] Power supply PWB unit(NOTE: Since the parts of PWB cannot be supplied, change it as a unit.)

|  | (Unit) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 901 | RDENT2142XHZZ | BA | N | E | Power supply PWB unit |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

$\square 1 \mathrm{ndex}$

| PARTS CODE | No. | $\begin{array}{\|l\|l\|} \hline \text { PRICE } \\ \text { RANK } \\ \hline \end{array}$ | NEW MARK | PART RANK |
| :---: | :---: | :---: | :---: | :---: |
| [C] |  |  |  |  |
| CCNW-212AXH01 | 1-2 | AK | N | C |
| " | 3-1 | AK | N | C |
| CCNW-215AXH01 | 1-12 | AG | N | C |
| [D] |  |  |  |  |
| DCEKC088MXHZZ | 1-45 | BL | N | E |
|  | 8-901 | BL | N | E |
| DCEKL483BXH01 | 1-16 | AX | N | E |
|  | 9-901 | AX | N | E |
| DCEKP481BXH01 | 1-1 | AP | N | E |
|  | 3-901 | AP | N | E |
| DCEKP481BXH03 | 1-1 | AP | N | E |
|  | 3-901 | AP | N | E |
| DCEKP482BXH01 | 3-7 | AQ | N | E |
| DUNTK468BXHBG | 7-2 | AH | N | E |
| DUNTK468BXHOG | 6-2 | AH | N | E |
| [G] |  |  |  |  |
| GCABA2342XHSA | 3-3 | AH | N | D |
| GCABA2342XHSB | 3-3 | AH | N | D |
| GCABB2343XHSA | 1-13 | AK | N | D |
| GCABB2343XHSB | 1-13 | AK | N | D |
| GCASP2110XHSA | 1-17 | AK | N | C |
| GCASP2110XHSB | 1-17 | AK | N | C |
| GCASP2111XHSA | 1-18 | AH | N | C |
| GCASP2111XHSB | 1-18 | AH | N | C |
| GDAI-2082XHSA | 1-46 | AD | N | C |
| GDAI-2082XHSB | 1-46 | AD | N | C |
| GDAI-2083XHZZ | 1-22 | AF | N | C |
| [ H ] |  |  |  |  |
| HPNLH2392XHSA | 1-54 | AE | N | D |
| HPNLH2392XHSB | 1-54 | AE | N | D |
| [J] |  |  |  |  |
| JBTN-2257XHSA | 3-4 | AD | N | C |
| JBTN-2257XHSB | 3-4 | AD | N | C |
| JBTN-2258XHSA | 3-5 | AC | N | C |
| JBTN-2258XHSB | 3-5 | AC | N | C |
| JBTN-2261XHSA | 3-6 | AC | N | C |
| JBTN-2261XHSB | 3-6 | AC | N | C |
| [L] |  |  |  |  |
| LBNDJ2006XHZZ | 1-55 | AA |  | C |
|  | 2-19 | AA |  | C |
| LBSHP2110XHZZ | 2-1 | AB | N | C |
| LBSHP2112XHZZ | 1-28 | AB | N | C |
| LFRM-2206XHZZ | 5-1 | AF | N | C |
| LFRM-2208XHZZ | 1-29 | AF | N | C |
| LFRM-2209XHZZ | 2-2 | AF | N | C |
| LHLDZ2180XHZZ | 2-3 | AC | N | C |
| LHLDZ2181XHZZ | 2-4 | AC | N | C |
| LHLDZ2184XHZZ | 1-30 | AC | N | C |
| LHLDZ2185XHZZ | 1-31 | AC | N | C |
| LPLTG2911XHZZ | 4-1 | AE |  | C |
| LPLTM3049XHZZ | 5-2 | AD | N | C |
| LPLTP2908XHZZ | 4-2 | AE |  | C |
| LPLTP3050XHZZ | 5-3 | AB | N | C |
| LPLTP3051XHZZ | 4-3 | AB | N | C |
| LSTPP2054XHZZ | 1-47 | AC | N | C |
| LX-BZ2138XHZZ | 1-B1 | AB |  | C |
| [M] |  |  |  |  |
| MARMP2023XHZZ | 1-48 | AB | N | C |
| MCAMP2027XHZZ | 5-4 | AC | N | C |
| MLEVP2311XHZZ | 5-5 | AB | N | C |
| MLEVP2312XHZZ | 5-6 | AB | N | C |
| MLEVP2313XHZZ | 5-7 | AC | N | C |
| MLEVP2314XHZZ | 5-8 | AB | N | C |
| MLEVP2315XHZZ | 1-32 | AC | N | C |
| MLEVP2316XHZZ | 1-23 | AC | N | C |
| MLEVP2317XHZZ | 2-5 | AB | N | C |
| MLEVP2319XHZZ | 1-49 | AC | N | C |
| MLEVP2320XHZZ | 1-19 | AC | N | C |
| MSPRC2735XHZZ | 5-9 | AC |  | C |
| MSPRC2954XHZZ | 1-5 | AC |  | C |
| MSPRC3110XHZZ | 5-10 | AB | N | C |
| MSPRC3112XHZZ | 1-33 | AC | N | C |
| MSPRC3117XHZZ | 2-6 | AB | N | C |
| MSPRC3127XHZZ | 5-11 | AB | N | C |
| MSPRC3148XHZZ | 1-34 | AC | N | C |
| MSPRD3115XHZZ | 1-35 | AB | N | C |
| MSPRD3116XHZZ | 1-24 | AB | N | C |
| MSPRD3169XHZZ | 1-56 |  | N | C |
| MSPRP3119XHZZ | 1-14 | AC | N | C |


| PARTS CODE | No. | $\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \end{aligned}$ | NEW MARK | PART RANK |
| :---: | :---: | :---: | :---: | :---: |
| MSPRP3123XHZZ | 1-15 | AC | N | C |
| MSPRT3114XHZZ | 1-25 | AC | N | C |
| MSPRT3139XHZZ | 4-5 | AA | N | C |
| MSPRT3140XHZZ | 4-4 | AA | N | C |
| [ N ] |  |  |  |  |
| NGERH2278XHZZ | 5-12 | AC |  | C |
| NGERH2379XHZZ | 5-13 | AC |  | C |
| NGERH2380XHZZ | 5-14 | AC |  | C |
| NGERH2391XHZZ | 5-15 | AC |  | C |
| NGERH2451XHZZ | 5-16 | AB |  | C |
| NGERH2475XHZZ | 5-17 | AB | N | C |
| NGERH2476XHZZ | 5-18 | AB | N | C |
| NGERH2477XHZZ | 1-50 | AC | N | C |
| NGERH2478XHZZ | 1-36 | AB | N | C |
| NGERH2479XHZZ | 2-7 | AB | N | C |
| NGERH2480XHZZ | 2-8 | AB | N | C |
| NGERH2481XHZZ | 2-9 | AB | N | C |
| NGERP2318XHZZ | 1-6 | AD |  | C |
| NROLP2426XHZZ | 1-26 | AC | N | C |
| NROLR2375XHZZ | 2-10 | AL |  | C |
| NROLR2425XHZZ | 1-37 | AP | N | C |
| NROLR2427XHZZ | 1-42 | AC | N | C |
| NROLR2428XHZZ | 2-11 | AP | N | C |
| NSFTZ2273XHZZ | 2-12 | AF |  | C |
| [P] |  |  |  |  |
| PCUT-2040SCZZ | 1-51 | AV | N | C |
| PGIDM2554XHZZ | 4-6 | AF | N | C |
| PGIDM2558XHZZ | 1-38 | AD | N | C |
| PGIDM2559XHSA | 1-27 | AE | N | C |
| PGIDM2559XHSB | 1-27 | AE | N | C |
| PGIDM2560XHSA | 1-7 | AC | N | C |
| PGIDM2560XHSB | 1-7 | AC | N | C |
| PGIDM2561XHSA | 1-8 | AC | N | C |
| PGIDM2561XHSB | 1-8 | AC | N | C |
| PGIDM2562XHZZ | 2-13 | AD | N | C |
| PGIDM2564XHZZ | 1-44 | AD | N | C |
| PGIDM2566XHZZ | 1-52 | AC | N | C |
| PGUMR2160XHZZ | 1-43 | AE |  | C |
| PHOP-2104XHSA | 1-9 | AF | N | C |
| PHOP-2104XHSB | 1-9 | AF | N | C |
| PHOP-2105XHZZ | 6-4 | AD | N | C |
|  | 7-4 | AD | N | C |
| PSHEZ3436XHZZ | 2-14 | AC |  | C |
| PSHEZ3510XHZZ | 4-7 |  | N | C |
| [Q] |  |  |  |  |
| QACCD2027XHZZ | 1-20 | AR |  | B |
| QCNCM2401SC0B | 8-94 | AA |  | C |
| QCNCM2442SC0B | 8-86 | AB |  | C |
| QCNCM2548SC1B | 9-30 | AH |  | C |
| QCNCM7014SC0B | 8-89 | AD |  | C |
| QCNCM7014SC0C | 8-87 | AA |  | C |
| QCNCM7014SC0F | 8-91 | AB |  | C |
| QCNCM7014SC0G | 8-85 | AB |  | C |
| QCNCM7014SC1F | 8-92 | AD |  | C |
|  | 8-95 | AD |  | C |
| QCNCM705BAF06 | 8-88 | AB |  | C |
| QCNCW2500SC0F | 8-93 | AE |  | C |
| QCNCW2500SC1B | 8-90 | AF |  | C |
| QCNW-207AXHZZ | 5-19 | AC | N | C |
| QCNW-209AXHZZ | 1-39 | AH | N | C |
| QCNW-210AXHZZ | 1-40 | AC | N | C |
| QCNW-211AXHZZ | 2-15 | AF | N | C |
| QCNW-213AXHZZ | 2-16 | AC | N | C |
| QCNW-3975XHGY | 6-5 | AG |  | C |
|  | 7-5 | AG |  | C |
| QCNW-3976XHBG | 7-3 | AK |  | C |
| QCNW-3976XHOG | 6-3 | AT |  | C |
| QCNW-4753XHZZ | 9-2 | AE |  | C |
| QCNW-4933XHZZ | 5-20 | AC |  | C |
| QFS-P2010SCZZ | 8-102 | AD | N | B |
| QJAKZ2060SC0B | 9-31 | AD |  | C |
| QJAKZ2079XH0D | 9-29 | AD | N | C |
| QSOCZ2051SC32 | 8-107 | AC |  | C |
| QSW-F2224SCZZ | 5-21 | AE |  | B |
| QSW-M2293XHZZ | 2-17 | AE | N | B |
| QSW-M2296XHZZ | 1-11 | AD |  | B |
| QSW-Z2263XHZZ | 9-34 | AG |  | B |
| [R] |  |  |  |  |
| RC-FZ3024SCZZ | 9-3 | AG |  | C |
| RCILZ2145XHZZ | 8-63 | AF |  | C |


| PARTS CODE | No. | $\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \end{array}$ | NEW MARK | $\begin{array}{l\|} \hline \text { PART } \\ \text { RANK } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| RCILZ2145XHZZ | 8-66 | AF |  | C |
| " | 8-112 | AF |  | C |
| " | 8-113 | AF |  | C |
| " | 8-114 | AF |  | C |
| " | 8-115 | AF |  | C |
| " | 8-116 | AF |  | C |
| " | 8-117 | AF |  | C |
|  | 8-118 | AF |  | C |
| " | 8-119 | AF |  | C |
| " | 8-120 | AF |  | C |
|  | 8-121 | AF |  | C |
| RCORF2123XHZZ | 2-20 | AD | N | B |
| RCORF2125XHZZ | 1-53 | AE |  | B |
| RCRSB0297AFZZ | 8-210 | AD |  | B |
| RCRSQ2157SCZZ | 8-209 | AF | N | B |
| RDENT2142XHZZ | 1-21 | BA | N | E |
|  | 10-901 | BA | N | E |
| RFILN2024XHZZ | 9-37 | AG |  | C |
|  | 9-38 | AG |  | C |
| " | 9-39 | AG |  | C |
| " | 9-40 | AG |  | C |
| " | 9-41 | AG |  | C |
| RHEDZ2059XHZZ | 1-41 | BF | N | B |
| RMOTZ2148XHZZ | 5-22 | AT | N | B |
| RR-TZ3017SCZZ | 8-195 | AC |  | C |
|  | 8-196 | AC |  | C |
| " | 8-199 | AC |  | C |
| " | 8-200 | AC |  | C |
|  | 8-202 | AC |  | C |
| RR-TZ3018SCZZ | 8-194 | AC |  | C |
|  | 8-197 | AC |  | C |
| " | 8-198 | AC |  | C |
|  | 8-201 | AC |  | C |
| " | 8-203 | AC |  | C |
| " | 8-204 | AC |  | C |
| " | 8-205 | AC |  | C |
| " | 8-206 | AC |  | C |
| RRLYD3138XHZZ | 8-208 | AG |  | B |
| RRLYD3433XHZZ | 9-28 | AH |  | B |
| RTRNI2164XHZZ | 9-75 | AG | N | B |
| RUNTZ2054XHZZ | 2-18 | BE | N | B |
| [S] |  |  |  |  |
| SPAKA287BXHZZ | 6-7 | AE | N | D |
|  | 7-7 | AE | N | D |
| SPAKA288BXHZZ | 6-8 | AE | N | D |
|  | 7-8 | AE | N | D |
| SPAKA289BXHZZ | 6-9 | AC | N | D |
|  | 7-9 | AC | N | D |
| SPAKA388BXHZZ | 6-18 |  | N | D |
|  | 7-18 |  | N | D |
| SPAKA389BXHZZ | 6-19 |  | N | D |
|  | 7-19 |  | N | D |
| SPAKC124BXHZZ | 7-10 | AH | N | D |
| SPAKC149BXHZZ | 6-10 | AH | N | D |
| SPAKP296BXHZZ | 6-6 | AE | N | D |
|  | 7-6 | AE | N | D |
| [ 7 ] |  |  |  |  |
| TCADZ2786XHZZ | 7-15 | AC |  | D |
| TCADZ2860XHZZ | 7-13 | AD | N | D |
| TCADZ2869XHZZ | 7-14 | AB | N | D |
| TCADZ2926XHZZ | 6-17 |  | N | D |
|  | 7-17 |  | N | D |
| TCADZ2935XHZZ | 6-16 |  | N | D |
|  | 7-16 |  | N | D |
| TINSE4010XHZZ | 7-1 | AG | N | D |
| TINSE4017XHZZ | 6-1 | AG | N | D |
| TLABH418AXHZZ | 7-12 | AC | N | D |
| TLABM253AXHZZ | 7-11 | AF | N | D |
| TLABP3078SCZZ | 8-211 | AA |  | D |
| [U] |  |  |  |  |
| UBATL2046SCZZ | 8-1 | AK |  | B |
| [V] |  |  |  |  |
| VCCCTV1HH120J | 8-20 | AA |  | C |
|  | 8-21 | AA |  | C |
| VCCCTV1HH220J | 8-34 | AA |  | C |
| " | 8-35 | AA |  | C |
| " | 8-44 | AA |  | C |
|  | 8-45 | AA |  | C |
| " | 8-57 | AA |  | C |
|  | 8-58 | AA |  | C |


| PARTS CODE | No. | $\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$ | $\begin{array}{\|c\|} \hline \text { NEW } \\ \text { MARK } \\ \hline \end{array}$ | PART RANK |
| :---: | :---: | :---: | :---: | :---: |
| VCCCTV1HH220J | 8-60 | AA |  | C |
| " | 8-61 | AA |  | C |
| " | 8-68 | AA |  | C |
| VCCCTV1HH330J | 9-21 | AA |  | C |
| VCEAGA1EW476M | 8-10 | AA |  | C |
| " | 8-11 | AA |  | C |
| " | 8-14 | AA |  | C |
| VCEAGA1HW106M | 8-6 | AA |  | C |
| " | 8-8 | AA |  | C |
| " | 8-12 | AA |  | C |
| " | 9-6 | AA |  | C |
| VCEAGA1HW107M | 8-17 | AA |  | C |
| VCEAGA1HW226M | 8-13 | AB |  | C |
|  | 9-4 | AB |  | C |
| " | 9-5 | AB |  | C |
| " | 9-8 | AB |  | C |
| " | 9-9 | AB |  | C |
|  | 9-10 | AB |  | C |
| VCEAGA1HW475M | 9-7 | AA |  | C |
| VCKYTV1CF105Z | 8-18 | AB |  | C |
| " | 8-22 | AB |  | C |
| " | 8-25 | AB |  | C |
| " | 8-30 | AB |  | C |
| " | 8-31 | AB |  | C |
| " | 8-33 | AB |  | C |
| " | 8-40 | AB |  | C |
| " | 8-41 | AB |  | C |
| " | 8-42 | AB |  | C |
| " | 8-43 | AB |  | C |
| " | 8-46 | AB |  | C |
| " | 8-51 | AB |  | C |
| " | 8-52 | AB |  | C |
| " | 8-53 | AB |  | C |
| " | 8-55 | AB |  | C |
| " | 8-59 | AB |  | C |
| " | 8-64 | AB |  | C |
| " | 8-65 | AB |  | C |
| " | 8-67 | AB |  | C |
| " | 8-73 | AB |  | C |
| " | 8-78 | AB |  | C |
| " | 8-79 | AB |  | C |
| " | 9-25 | AB |  | C |
| " | 9-26 | AB |  | C |
| VCKYTV1EB104K | 8-49 | AA |  | C |
| " | 8-70 | AA |  | C |
| " | 8-71 | AA |  | C |
| VCKYTV1EF104Z | 8-4 | AA |  | C |
| " | 8-7 | AA |  | C |
|  | 8-29 | AA |  | C |
| " | 8-32 | AA |  | C |
| " | 8-37 | AA |  | C |
| " | 8-39 | AA |  | C |
| " | 8-48 | AA |  | C |
| " | 8-50 | AA |  | C |
| " | 8-56 | AA |  | C |
| " | 8-76 | AA |  | C |
| " | 8-80 | AA |  | C |
| " | 8-82 | AA |  | C |
|  | 9-13 | AA |  | C |
| " | 9-22 | AA |  | C |
| VCKYTV1HB102K | 8-2 | AA |  | C |
| " | 8-3 | AA |  | C |
| " | 8-15 | AA |  | C |
| " | 8-16 | AA |  | C |
| " | 8-23 | AA |  | C |
| " | 8-24 | AA |  | C |
| " | 8-26 | AA |  | C |
| " | 8-47 | AA |  | C |
| " | 8-83 | AA |  | C |
| " | 8-84 | AA |  | C |
| " | 9-14 | AA |  | C |
| " | 9-19 | AA |  | C |
| VCKYTV1HB103K | 8-5 | AB |  | C |
|  | 8-75 | AB |  | C |
| VCKYTV1HB221K | 8-74 | AA |  | C |
| " | 9-16 | AA |  | C |
| " | 9-17 | AA |  | C |
| VCKYTV1HB222K | 8-27 | AA |  | C |
|  | 8-28 | AA |  | C |
| " | 8-36 | AA |  | C |


| PARTS CODE | No. | $\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \\ \hline \end{array}$ | NEW MARK | $\begin{array}{\|l\|} \hline \text { PART } \\ \text { RANK } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| VCKYTV1HB222K | 8-38 | AA |  | C |
| " | 8-54 | AA |  | C |
| " | 8-62 | AA |  | C |
| " | 9-11 | AA |  | C |
| " | 9-12 | AA |  | C |
| VCKYTV1HB392K | 9-15 | AA |  | C |
| VCKYTV1HB393K | 9-27 | AB |  | C |
| VCKYTV1HB472K | 8-77 | AA |  | C |
| VCKYTV1HB821K | 9-24 | AA |  | C |
| VCKYTV1HF104Z | 8-19 | AA |  | C |
| " | 8-81 | AA |  | C |
| " | 9-18 | AA |  | C |
|  | 9-20 | AA |  | C |
| " | 9-23 | AA |  | C |
| VHDDSS133//-1 | 9-32 | AA |  | B |
| " | 9-33 | AA |  | B |
| VHDHRW0202B-1 | 8-100 | AD |  | B |
| VHD1SS355//-1 | 8-97 | AB |  | B |
|  | 8-98 | AB |  | B |
| " | 8-99 | AB |  | B |
| " | 8-101 | AB |  | B |
| VHEHZ27-1//-1 | 9-78 | AB |  | B |
| VHIFC2FM209-1 | 8-104 | BD | N | B |
|  | 8-106 | BD | N | B |
| VHINJM2113M-1 | 8-109 | AG |  | B |
| VHINJM2904M-2 | 9-35 | AG |  | B |
| " | 9-36 | AG |  | B |
| VHITC7WT74FU1 | 8-103 | AF | N | B |
| VHIULN2003AN/ | 8-110 | AE |  | B |
| VHIW24258S7LE | 8-105 | AQ |  | B |
| VHIXC61AN45M1 | 8-111 | AE | N | B |
| VHI27010FZG0B | 8-107 | BM | N | B |
| VHI62FP332P-1 | 8-207 | AF |  | B |
| VHPSG206S//-1 | 8-122 | AG |  | B |
|  | 8-123 | AG |  | B |
| VHPTLP521-1BL | 9-42 | AE |  | B |
| VHVERZV5D471/ | 9-76 | AC |  | B |
|  | 9-77 | AC |  | B |
| VHVRA391PV6-1 | 9-1 | AE |  | B |
| VRD-HT2HY223J | 9-46 | AA |  | C |
| VRS-HT3AA101J | 8-96 | AA |  | C |
| VRS-TS2AD000J | 8-9 | AA |  | C |
| " | 8-69 | AA |  | C |
| " | 8-72 | AA |  | C |
| " | 8-133 | AA |  | C |
| " | 8-135 | AA |  | C |
| " | 8-160 | AA |  | C |
| " | 8-166 | AA |  | C |
|  | 8-167 | AA |  | C |
| " | 8-175 | AA |  | C |
| " | 8-176 | AA |  | C |
| " | 8-179 | AA |  | C |
| " | 9-52 | AA |  | C |
| " | 9-64 | AA |  | C |
| " | 9-66 | AA |  | C |
| VRS-TS2AD101J | 9-69 | AA |  | C |
| VRS-TS2AD102J | 8-159 | AA |  | C |
| " | 8-174 | AA |  | C |
|  | 8-183 | AA |  | C |
| " | 9-49 | AA |  | C |
| " | 9-57 | AA |  | C |
| VRS-TS2AD103J | 8-130 | AA |  | C |
|  | 8-153 | AA |  | C |
| " | 8-162 | AA |  | C |
| " | 8-173 | AA |  | C |
| " | 8-178 | AA |  | C |
| " | 8-192 | AA |  | C |
| VRS-TS2AD104J | 8-177 | AA |  | C |
| " | 8-181 | AA |  | C |
| " | 8-182 | AA |  | C |
| " | 8-189 | AA |  | C |
| VRS-TS2AD105J | 8-161 | AA |  | C |
| VRS-TS2AD106J | 8-131 | AA |  | C |
| VRS-TS2AD121J | 8-163 | AA |  | C |
| VRS-TS2AD151J | 8-143 | AA |  | C |
| " | 9-58 | AA |  | C |
| VRS-TS2AD152J | 9-48 | AA |  | C |
| VRS-TS2AD153J | 8-169 | AA |  | C |
|  | 9-73 | AA |  | C |
| VRS-TS2AD201J | 8-134 | AG |  | C |


| PARTS CODE | No. | $\begin{array}{\|l\|l\|} \hline \text { PRICE } & \text { NEW } \\ \text { RANK } & \text { MARK } \\ \hline \end{array}$ |  | PART <br> RANK |
| :---: | :---: | :---: | :---: | :---: |
| VRS-TS2AD201J | 8-146 | AG |  | C |
| VRS-TS2AD203J | 8-170 | AA |  | C |
| " | 8-184 | AA |  | C |
| " | 8-188 | AA |  | C |
| " | 9-51 | AA |  | C |
| " | 9-53 | AA |  | C |
| " | 9-68 | AA |  | C |
| " | 9-70 | AA |  | C |
| VRS-TS2AD222J | 8-164 | AA |  | C |
| VRS-TS2AD223J | 8-142 | AA |  | C |
| " | 8-152 | AA |  | C |
| " | 9-47 | AA |  | C |
| VRS-TS2AD224J | 8-168 | AA |  | C |
|  | 9-60 | AA |  | C |
| VRS-TS2AD271J | 8-128 | AA |  | C |
| " | 8-138 | AA |  | C |
| " | 8-191 | AA |  | C |
| VRS-TS2AD3R0J | 8-132 | AA |  | C |
| VRS-TS2AD301J | 9-67 | AA |  | C |
| VRS-TS2AD303J | 8-171 | AA |  | C |
| VRS-TS2AD332J | 9-56 | AA |  | C |
| " | 9-59 | AA |  | C |
| " | 9-65 | AA |  | C |
| " | 9-72 | AA |  | C |
| VRS-TS2AD333J | 8-127 | AA |  | C |
| " | 8-129 | AA |  | C |
| " | 8-139 | AA |  | C |
| " | 8-140 | AA |  | C |
| " | 8-141 | AA |  | C |
| " | 8-145 | AA |  | C |
| " | 8-147 | AA |  | C |
| " | 8-150 | AA |  | C |
| " | 8-151 | AA |  | C |
| " | 8-154 | AA |  | C |
| " | 8-155 | AA |  | C |
| " | 8-156 | AA |  | C |
| " | 8-157 | AA |  | C |
| " | 8-165 | AA |  | C |
| VRS-TS2AD393J | 9-61 | AA |  | C |
| VRS-TS2AD433J | 8-172 | AA |  | C |
| " | 9-54 | AA |  | C |
| VRS-TS2AD471J | 8-136 | AA |  | C |
|  | 8-137 | AA |  | C |
| " | 8-144 | AA |  | C |
| " | 8-148 | AA |  | C |
| " | 8-149 | AA |  | C |
| " | 8-190 | AA |  | C |
| VRS-TS2AD472J | 9-74 | AA |  | C |
| VRS-TS2AD473J | 8-180 | AA |  | C |
| " | 9-71 | AA |  | C |
| VRS-TS2AD474J | 8-187 | AA |  | C |
| VRS-TS2AD512J | 8-158 | AA |  | C |
|  | 8-185 | AA |  | C |
| " | 9-50 | AA |  | C |
| VRS-TS2AD562J | 8-186 | AA |  | C |
| VRS-TS2AD621J | 9-63 | AA |  | C |
| VRS-TS2AD680J | 8-193 | AA |  | C |
| VRS-TS2AD822J | 9-62 | AA |  | C |
| VRSTS2AD8662F | 9-55 | AA |  | C |
| VSRNC1402//-1 | 8-125 | AC |  | B |
| " | 9-44 | AC |  | B |
| " | 9-45 | AC |  | B |
| VS2SA1037KS-1 | 8-124 | AB |  | B |
|  | 8-126 | AB |  | B |
| VS2SC2412KR-1 | 9-43 | AD |  | B |
| [ X ] |  |  |  |  |
| XBBSD30P06000 | 1-B4 | AA |  | C |
| XBPSN40P06K00 | 1-B5 | AA |  | C |
| XEBSD30P08000 | 1-B3 | AA |  | C |
|  | 5-B3 | AA |  | C |
| XEBSD30P12000 | 1-B7 | AA |  | C |
| XHBSD30P06000 | 1-B6 | AA |  | C |
| XUBSD20P06000 | 3-B2 | AA |  | C |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

MEMO

# SHARP 

## COPYRIGHT © 1999 BY SHARP CORPORATION

ALL RIGHTS RESERVED.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

## SHARP CORPORATION

 Communication Systems Group Quality \& Reliability Control Center
[^0]:    As a part of our policy of continuous improvement, SHARP reserves the right to make design and specification changes for procduct improvement without prior notice. The performance specifications figures indicated are nominal values of production units. There may be some deviation from these values in individual units.

[^1]:    * Please complete this report before calling the "TAC" hotline if problem still occurs.

